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ABSTRACT

The current Air Force Nondestructive Pavement Testing (NDPT) method
requires a rational method to evaluate pavement layer modulus values.
A reasonable step toward the development of such a method is computer
analyses of elastic layered systems subjected to dynamic loading.
This research adopts the Method of Direct Analysis which uses the impulse-
momentum laws and constitutive relations but bypasses the explicit use

of differential equationms.

As a result of the research, two computer programs were developed,
one for infinite beams and the other for infinite plates both on elastic
foundations. To demonstrate the effectiveness of the developed computer
programs, response analyses were made for sustained, pulse and sinusoidal
loadings. The results for sustained loading on an infinite beam agreed
very well with an available exact solution. It was concluded that the
Mechod of Direct Analysis is an effective tool for dynamic response

analysis of elastic layered systems.
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NOMENCLATURE

Cross-sectional area which contributes to dynamic inertia.

Cross-sectional area which contributes resistance to shearing.

Plate velocity = {E/[v(l-vz)]}%

Dilatational wave velocity in a beam = [EIb/pIi];2

Shear wave velocity in a beam = [ASG/oAi]%

Shear wave velocity in a plate = [G/o];i

Flexural rigidity of plate = Eh3/[12(1-v?)]

Modulus of elasticity

Modulus of rigidity = E/[2(1+v)]

Plate thickness

Moment of inertia which contributes resistance to bending
Moment of inertia which contributes resistance to dynamic inertia
Superscript referring to quantities of the jth cell

Shear correction factor for plate

Internal bending moment

Radial bending moment per unit length

Tangential bending moment per unit length

Transverse shear force per unit length

Intensity of distributed external load on beam

Radial distance along plate
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t = Time
V = Vertical shear force on a cross-section of the beam

or w_, respectively

v = Velocity of deflection in a beam or plate, Ve .

w = Transverse displacement of the midplane of plate

x = Coordinate along length of beam

y = Deflection of beam

¢. = Total slope of the deflection curve of the beam

€, = Angular strain of an element of the beam

¢ = Total slope of the deflection curve of the plate

€, = Angular strain of an element of the plate

8 = Tangential direction

v = Poisson's ratio

p = Density of the material of beam or plate

¢ = Rotation of the cross-section of the plate about the tangential axis
v = Slope of the deflection curve of a beam when shearing force is neglected

» = Angular velocity of rotation of an element of the beam or plate,

b OT 6., respectively
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1. INTRODUCTION

1.1 Background Information

The current Air Force Nondestructive Pavement Testing (NDPT) method
contains two main components--data collection equipment and analytical
method [1]. The data collection equipment is used primarily for evalua-~
tion of in-situ elastic modulus of each pavement constituent material.
The elastic modulus values are then used as input data for the analytical
method which determines the structural capacity of existing airfield

pavements.

The data collection equipment consists of an impulse loader with
the necessary instrumentation and a desk-top computer for preliminary
data analysis and evaluation. The pavement response to the impulse
loading is measured by using accelerometers; the acceleration-time data
are analyzed by using the Discrete Fourier Transform (DFT) technique (2]
to obtain the phase angle versus frequency relationship which is then
used to develop the dispersion curve. From the dispersion curve, the
shear wave velocity propagating through the pavement is obtained and
the shear modulus of each pavement constituent material is computed.
Although the computation of elastic modulus is simple, the interpreta-
tion of dispersion curves for modulus calculation is not easy and
straightforward [3,4]. For this reason, the current NDPT method is

without an adequate method for computation of layer modulus values

[51.




Pavement response to dynamic loading is a complex problem due to

the presence of layers of different materials and also the nature of

the constituent materials. The presence of layers causes reflection

and diffraction of waves. Under dynamic loading, the pavement materials
such as bituminous concrete and soil may’produce real and imaginary

modulus components which vary with frequency of vibration [6]. Because

of these factors, it is very difficult to find a solution especially

for high order modes of response (7). As a consequence, no straightforward
procedure is presently available for determination of realistic modulus

values from dynamic loading test results [1].

However, there is the so-called method of Direct Analysis which
bypasses the explicit use of differential equations and may avoid some
of the difficulties just mentioned. Because this method has been
successfully applied to certain beam and plate problems {8,9], this
research is undertaken to investigate the feasibility of using this
technique to analyze the response of elastic layered system to dynamic
loading. While the ultimate goal of the research is to develop a
computer program for elastic layered system, the immediate objective of

this study 1is specified below.

1.2 Research Objective

The ultimate goal of the research was to develop a computer
program for analysis of the response of elastic layered system to

dynamic loading. As a first step striving toward the goal, this

T T S TR S ey T vt e




research was undertaken to test the available theory and to develop the

modifications necessary for direct application of the Method of Direct

Analysis to problems of infinite beams and plates on elastic foundation.
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2. INFINITE BEAM ON ELASTIC FOUNDATION

2.1 The Physical Laws

The physical laws used in the development of computer programs
include the impulse-momentum laws and the constitutive relations. The
beam is divided lengthwise into elements of equal length. For each
element, the equations of motion and constitutive relations are derived
for two modes of motion -- rotation and translation. The basic assumptions
required in the derivation of the physical laws include that the material
is elastic, homogeneous and isotropic, that the deformation of the beam
is due to both flexural motion and shear deflection of the cross-section,
and that the elastic foundation behaves as Winkler foundation. These

basic assumptions may be found elsewhere [10].

2.1.1 Equations of Motion

The equations of motion are obtained by applying the impulse-momentum
laws directly to an element of the beam. Figure 1 shows the free-body
diagram of a typical jth element. For this element, the rates of change

in both rotation and translation are given below:

Rotation of the jth element -

do | _1
dt oIidx

(172 (W + vithy & od -ty (1)

]
3
%9
?.
;
f




J %

Ty v

jTH ceLL

ARERRRL

fe—— dx ———f

f

1 vj+l

Figure 1. Free-Body Diagram of jth Element

Figure 2. Deformation of jth Element

A



Translation of the jth element -

dv 1 j+1

N
ac oAidx v - VY 4+ qdx - R,) 2)

k|

The foundation reaction, Rj’ shown in Eq. (2) is a function of
foundation deformation which, in essence, is the deflection of the beam.
Two different foundation supports are considered in the computer program,
i.e., linear and nonlinear supports. For the linear support, the founda-

tion reaction is directly proportional to the deflection, viz

R, = -k 3

3 o (3)
For the nonlinear support, the following hyperbolic function is used:

R, = -ky /(1 + 4

1 Yj ( nyj) (4)

where k is the spring constant having a unit of psi, yj is the mean
deflection of the jth element and n is a constant with a unit of in-l.
The above hyperbolic relationship between load and deformation is often

used for describing the nonlinear behavior of soils [11,12].

2.1.2 Constitutive Equations

The constitutive equations are obtained from the consideration of
the deformation of a typical beam element. As shown in Figure 2,

the jth element undergoes flexural as well as shear deformation. Thus




two equations can be obtained, one for shear force and the other for
the bending moment. According to Timoshenko beam theory (10], the shear

force is proportional to the shear angle, namely

V=AsG {ey -} (5)

where

ey = (yj+1 - yj)/dx (6)

For the internal bending moment, the simpler Euler-Bernoulli theory provides

the following relationship:

M= -‘EI.b {ew} (7N

where

ey = @I -y /ax (8)

It has been shown [13[ that any input to the beam which causes it to
undergo a flexural mode of motion immediately produces two different
waves -~ dilation and shear waves. The dilation wave which is caused
by discontinuities in w and M, as well as discontinuities in their ﬁ
higher derivation propagates at a velocity C, which is equal to

EI i
C1 = [ b ] (9)

ol

3




The shear wave is related with discontinuities in v and V, as well as

discontinuities in their higher derivatives. The shear wave velocity
may be shown to be (13]

GA i
Cy = [EK; (10)

2.1.3 Boundary Conditions

The problem under investigation is a beam on elastic foundation which
has infinite length and is subjected to a vertical dynamic load. The
dynamic load is distributed over a small area which can be treated as
a concentrated load. In the analysis, the beam is split into two at the
loading point so that each semi-infinity beam carries a shear force
which is equal to one-half of the applied load. Meanwhile, for the
continuity requirement, the slope of the deformed beam at the loading

point is maintained at a value of zero.

Furthermore, the shape of the deflected beam dictates that deflections
beyond distance L (measured from the load) become very small. According
to Timoshenko [14], the distance L for static loading is approximately
equal to 5.5/8, where B8 = 4 \/k/4EI, k = spring constant of the elastic
foundation, E = Young's modulus, and I = moment of inertia of the cross
section of the beam with respect to z axis. On this basis, the semi-
infinite beam can be approximated by a beam with a finite length L. Thus,
for the problem under consideration, the shear input and boundary con-

ditions are

-, *;-w" m*;'m* R TR W
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v] B (11)
w] cmo = O (12)
y] ol - 0 (13)

In the analysis, it is convenient to express the boundary conditions in

terms of the angular and linear velocities, respectively, as follows.

u]x*o = u‘t] x=0 0 (14)

where subscript t denotes time.

The preceding equations are a complete statement of the problems of
the flexural traveling stress waves in an infinite beam on elastic founda-
tions. Of these equations, the rotational impulse-momentum law, Eq. (1),
indicates that the angular velocity of rotation, w, is a function of both
the moment and the shear. Since the moment is associated with the dilation
wave and the shear with the shear wave, Eq. (1) exhibits an interaction
of two waves and by definition the angular velocity is a coupled quantity.
Moreover, Eq. (5) indicates that the shear force is also a coupled

quantity since it is a function of both the linear displacement gradient

oy
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and the angle of rotation. Because of the interaction or coupling between
the two waves, variables which are associated with both wave speeds must
be given special treatment. Thus, the solution requires a special

technique of coupling which is presented in the following.

2.2 The Technique of Coupling

In the Method of Direct Analysis, the beam is divided into finite
number of elements or cells as mentioned earlier. It is convenient to
determine the cell length based on the 'characteristic assumption,"
namely, dx = ¢ dt (8,15], where c = wave velocity and dt = time increment.
Since two distinct wave speeds are present, the cell length dx = ¢ dt
cannot be satisfied for both speeds simultaneously. Thus, a technique
is needed to determine whether the wave under consideration has passed
across the cell. If the wave has crossed the cell, the computation
of stresses, strains and velocities for this cell will be triggered.
Otherwise, further computation is skipped and the current dynamic
variables are held over until the time has sufficiently advanced, and

the cycle is repeated.

There are two procedures available for carrying out the above

4

technique, namely, the "wave index" and "clock" methods (16]. These two
procedures are completely analogous but the "clock'" method is more
amenable to a problem in which two waves are present. For this reason,

the "clock" method is adopted in this analysis and is discussed below.

R e e o R = vt 5
o~ Lo ¥ h
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In the "clock" method, two time "clocks" are established; one for
dilatation wave and the other for shear wave. Each "clock" signals the
instant when the wave propagation procedure for that particular wave
is undergone. The rate of advancement of the two clocks are defined

as follows:

dx
dtD o (16)
D
for dilatation wave clock, and
de, = — a7

for shear wave clock,

in which CD and C_ are the dilatation and shear wave velocities, respectively.

S

Since CD is greater than CS’ the dilatation wave front initially will
reach the end of a cell before the corresponding shear wave front. When
this has happened, the dilatation time clock will advance dtD, viz,

tD' =t + dtD. and the quantities associated with the dilatation wave
will be adjusted. Then, two possibilities follow. One possibility

is that the dilatation clock has advanced another dtD before the shear
clock. When this condition occurs, the quantities associated with the
dilation wave front again will be adjusted. The other possibility is

that the shear wave clock advances dtR before the next advancement of

the dilatation clock. When this happens, the quantities associated with

' . ‘ v b B -
T TR v e g | J




the shear wave front will be adjusted. A flow diagram summarizing this

propagation procedure is given in Figure 3. Note that in this analysis,
the actual time, t, is chosen to coincide with tD' A more detailed

discussion on wave propagation procedures is available elsewhere [16].

The preceding wave propagation technique is used as the basis for
the arrangement of the various physical laws presented earlier. It
should be emphasized that the position of the important steps must be
carefully organized in order to maintain a stable solution. 1In general,
the arrangement requires that the cause and effect are properly sequenced
and the statement of boundary conditions should follow immediately after

the calculation of the dynamic quantity for which they are prescribed.

2.3 The Technique of Considering Damping

The effect of damping is takén into consideration with the use of
exponential damping function. In the problem of flexural traveling waves
in beams and plates there are two velocities -- linear and angular velocities
which must be damped in order to attain an equilibrium state. According
to exponential damping function which is often used, these two velocities
can be expressed as follows:

-t/1, (18a)

w == e
[¢]

-t/t,

VvV =v e
o

(18b)
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where <9 and v, are the initial linear and angular velocities, respectively,

and 1, and T, are arbitrary constants.

Upon differentiation, one obtains the magnitude of damping occurring
in time dt or the change of angular and linear velocities due to damping

as follows:

dw = - w dt (19a)
T
1

dv = - v ‘Ti—t (19b)

These damping relations Eq. (19a and b) are incorporated into the previously
developed impulse-momentum laws as shown in Figure 4. It should be noted
that because of the desire to eliminate computation fluctuations, it

has been found necessary to use half of the initial and half of the final
velocity (linear or angular) to obtain the total contribution of motion

damping occurring in time dt.

From Eq. (19) it is seen that a completely undamped solution can
be obtained by letting T, and T, equal to infinity. To obtain a transient
and static solutions, dt/ri must be restricted to lie in the range between
zero and one. This general principle of synthesizing static and dynamic
solutions constitutes a unique feature of the Method of Direct Analysis.
Note that in mathematical approaches, static and dynamic solutions are

governed by elliptic and hyperbolic equations, respectively. Separate

analyses are generally required for each type of problem.




Dilatation Wave (angular velocity)

e ——————

(mj)' : wj - wj(dtIZTl)

ANGULAR IMPULSE-MOMENTUM LAW

dw = ....

wh" = ()" + du

-

Wh" = " - W @esan)

Shear Wave (linear velocity)

' = - vj(dtR/ZTZ)

L

LINEAR IMPULSE~MOMENTUM LAW
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Using these properly organized physical laws, boundary conditions

and damping equations, the computer program developed by Koenig [16]

for cantilever beams has been modified and extended to suit the condition
of infinite beams on elastic foundations. The computer program which is
developed for IBM 370/3081 is capable of providing the response of beams
to both transient and steady-state loadings. The transient loading may
be a triangular, rectangular or haver sine pulse; and the steady-state
loading may include harmonic or sustained loadings. Furthermore, both

linear and non-linear elastic foundation can be considered.

The computed response can be presented in both numerical and graphical
forms. The plotting of output is accomplished by incorporating an
available program PLOTIT [17] into the computer program. The listing

of the complete computer program is included in Appendix A.
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3. DYNAMIC RESPONSE OF BEAM ON ELASTIC FOUNDATION

The developed computer program was used to analyze the response of
infinite beam on elastic foundation for several types of dynamic loading
to demonstrate its effectiveness in the analysis of stress wave propa-
gation. The dynamic loadings analyzed included step sustained loading,
step pulse loadiag and sinusoidal loading. Results of the analyses

are presented and discussed below.

3.1 Response to Step Sustained Loading

In this analysis, the infinite beam is made of portland cement
concrete having a cross section 1 in. wide and 4 in. high with a
modulus of elasticity of 3 x 106 psi. The beam is subjected to a con~
centrated vertical load of 200 pounds with a sufficiently long duration
so that it can be considered as a sustained load. The beam is supported
by springs having two different stiffnesses, one lower and the other
higher than the stiffness of the beam. To demonstrate the ability

of the computer program for handling different damping conditions,

both under and over-damped conditions are analyzed for one spring stiffness.

3.1.1 Over-Damped System

In the preceding chapter, it has been pointed out that for over-

damped condition, the constant 71, in Equation (19) must be small.

i

It should be noted, however, that too small values of 7T, may over-

i

e =g ‘f r—ﬁrv‘uﬂtgglhybsw " Yt - yz;-ﬁ" |




18

depress the response and as a result considerably longer time is needed
to reach a steady-state condition. The time required to reach a steady-
state response depends greatly on the stiffness of the beam-foundation

system and time increment (dt) used in the analysis. Thus, the values

of T must be carefully chosen in order to keep the time to steady-state,

and therefore the computation cost, to a minimum.

In the analysis, two spring stiffnesses, 1 x 104 and 4 x 106 psi,

are used. For the system with 1 x 104 psi spring coastant, the length

of the beam analyzed is 48 in., cell length is 1 in. and the time

constant 1, is chosen at 30 usec. Results of the analysis are presented

in two general forms: response versus time and response versus distance.
Figures 5, 6 and 7 show the deflections, moments and shears at three
locations versus time, respectively. It is seen that the responses

almost reach a maximum at the end of the curves. Also, time lags exist
between the responses at the loading point and that away from it indicating

the phenomenon of stress wave propagation away from the loading point.

The computed responses shown at the end of the curves are plotted
against distance in Figures 8 (deflection), 9 (slope), 10 (moment)
and 11 (shear). Also included in these figures are an available exact
solution for static loading which is given by Timoshenko and is described

below [14].

Deflection y = %% e-Bx (cos Bx + sin Bx) (20a)
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—d-z- |- Eﬁ -Sx 1 1N
Slope Ix w © sin 8x (201)
Moment M = - %E e—Bx (sin 8x - cos Bx) (20¢)
Shear vV = - §~e-6x cos Bx (204d)

where notations P, k and B have been defined in the preceding chapter.

It is obvious that the exact solution provides continuous curves.
For clarity, however, only some values are selected arbitrarily for

comparison. Although there is some discrepancy between the two sets of

data, the agreement generally speaking is very good. Primary causes

for the difference may include the following: (1) At the time of
comparison, the steady-state response has not yet established as reveaied
by Figures 5, 6 and 7 in which the response has not quite reached the
constant value, (2) The cell length of 1 in. is too large. Of the four
figures under consideration, Figure 9 provides a better view of the
effect of coarse cell; in this figure, l-in. line segments are clearly
shown. It is believed that with the use of smaller cell length together
with larger time of comparison, the results of Direct Analysis should
match with the exact solution very well. The excellent agreement between
the two sets of results indicates that the developed computer program

is capable of providing accurate solution for infinite beam- oa elastic

foundations.

Another system analyzed has a spring constant of 4 x 106 psi.

For this condition, the length of the beam used is 10 in., cell length
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is 0.05 in., and time constant t, is chosen at 6.6 usec. Results of

i
the analysis are summarized in Figures 12, 13 and 14 which show the
variation of deflection, moment and shear with time, respectively. As
expected, the shape of the curves resembles that of the previous system.
Primary reasons for analyzing a system with such a high spring constant
are two-fold: (1) to demonstrate that the computer program can be used
to analyze the dynamic response of an electric beam supported by a
foundation which is stiffer than the beam, and (2) to érovide response

data of over-damped condition for comparison with the data of under-

damped condition which is presented later.

3.1.2 Under-Damped System

In order to obtain at least one full cycle of fluctuation and at
the same time to keep the computation cost to a minimum, a very high
value of spring constant (4 x 106 psi) was selected for analysis.

This value of spring constant was also used in the preceding over-damped
condition so that a comparison of response data between over-damped and
under-damped systems can be made. As before, the length of the beam
used in the analysis is 10 in., and the cell length is 0.05 in. but

time constant is selected at 30 msec. Figures 15, 16 and 17 present
respectively, the variations of deflection, moment and shear with time
for three different locations. Although only a little more than one

cycle of data are is obtained, a trend that the respouse data fluctuate

around the maximum value of the over-damped solution (Figures 12 through

- -, ':w Mm’;'m, = v s
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14) is revealed. Also, because of the damping, the peak response value

decreases with increasing cycle of fluctuation.

3.2 Response to Step Pulse Loading

The step pulse loading analyzed is a 200 1lb. vertical concentrated

load having a load duration of 3 msec. The infinite beam is of the same

material and the same dimension as that used in the previous condition,
namely, portland cement concrete beam, 1 in. wide by 4 in. high with

3 x 106 psi modulus. However, the support is a nonlinear elastic
foundation which behaves according to the hyperbolic function described
by Eq. (4). In Eq. (4), the values of constants k and n are chosen to
be 10,000 psi and 100 in.—l, respectively. With the use of 1 x 104 psi
for k value and a load of 200 1b., this system is different from the
previous one only in load duration and nonlinear spring support. To
obtain an over-damped solution, the same time constant t = 30 usec as
used before is adopted. Meanwhile, the length of the beam analyzed is

also 48 in. and the cell length is 1 in.

The deflection, moment and shear versus time relationships obtained
from the computer analysis are presented in Figures 18, 19 and 20,
respectively. It is seen that during the loading period the response
increases with time following the same path as that of the step sustained
loading shown in Figures 5, 6 and 7. After the load is removed, i.e.,
after 3 msec, the response gradually diminishes with increasing time.

A comparison between Figures 4 through 7 and Figures 18 through 20
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indicates no apparent difference in the response within the loading

period between the linear and nonlinear systems. This is probably because

the magnitude of deflection under 200 1b. is not large enough to cause

significant difference in foundation reaction.

To show the variation of response with distance, a time of 3.48 msec
is used for plotting. The curves thus obtained are presented in Figures 31
(deflection), 22 (slope), 23 (moment) and 24 (shear). The shapes of
these curves in general are similar to those in Figures 8 through 11
except for the shear curve especially in the region near the loading
point. At x=o, the shear equals 100 1lb. in Figure 11 and O 1lb. in Figure 24.
This is due to the fact that the time used for plotting (3.48 msec) exceeds
the duration of the pulse loading (3 msec). At 3.48 msec, the loading
has already vanished and therefore the shear at x=o equals zero as indicated

in Figure 20.

3.3 Response to Sinusoidal Loading

The same portland cement concrete beam, 1 in. wide by 4 in. high,
supported by a linear elastic foundation with k = 1 x 104 psi is subjected
to a sinusoidal loading which has an intensity of 200 1b. with a frequency
of excitation of 3600 t. The duration of the sinusoidal loading is 3 sec.
which is large enough to provide a steady-state response. As before,

the length of the beam analyzed is 48 in. and the time constant is

selected at 30 usec to effect over-damping. However, to reduce the cost
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}
§
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of computation a cell length of 2 in. instead of 1 in. is used in this
analysis. The computed deflection, moment and shear are shown respectively
in Figures 25, 26 and 27 as a function of time. As would be expected,

delayed responses at points away from the load are shown.

The responses obtained for three different times, 8.7, 17.4 and
26.1 usec are plotted agsinst distance in Figures 28 through 31. The
time used for plotting is chosen arbitrarily. These figures demonstrate

again the phenomenon of wave propagation.

T e T e M‘\'m, T Yt ’. .
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4. INFINITE PLATE ON ELASTIC FOUNDATION

4.1 Development of Computer Program

The problem of infinite plate on elastic foundation with vertical
loading is axisymmetrical., For this reason, in the development of the
computer program, the plate is divided into cells or elements having
the shape of concentric rings. As for the beam, the equations of motion
and constitutive equations of each cell are derived for both rotation
and translation motions. Also, as before, the'elastic foundation is

assumed to behave as Winker medium.

In the development of physical laws, we consider the free-body
diagram of a typical jth element shown in Figure 32 and apply the
impul se-momentum laws. The equations of motion thus obtained are as

follows:

Rotation of the jth element

w I dearny - w30 - Mej dr - % (] er dr + (ci+dr) er+1dr] (21)

de (oh®/12) (rdar + (dr)?/2]
Translation of the jth element
dv (rj + dr) er+1 - errj - (rj + dr/2) Rj

oV . (22)
dt " oh [rd dr + (dr)?/2]

where the foundation reaction Rj has been defined in Equations (3) and (4).
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The constitutive equations are obtained in a manner similar to

those of the beam, viz

M = Die, + 1 ¢} (23)
My = DEE ¢+ v e (24)
Q. = K,? Gh {9 + ¢} (25)
where
D = ﬁ%‘z_\),)— (26)
€y = @t = odyjar 27)
e, = ot - wyar (28)
Kzz =0.76 + 0.3 v (29)

As for the beam, the dilatation wave velocity is the velocity of
propagation of discontinuities in the moments as well as the angular
velocity and/or their higher derivatives, and the shear wave velocity
is the velocity of propagation of discontinuities in the shear and linear
velocity and/or their higher derivatives. These two velocities can be

expressed as follows:

Dilatation wave velocity or plate velocity

E !!
% " [ <o




54

Shear wave velocity

kcla=x, [&1"

2%2 2 [ 3 (31)

The boundary conditions for the infinite plate on elastic foundation
may be derived from the shape of the deflected plate. Under a vertical
load uniformly distributed over a small area, the deformed plate resembles
a bowl which is axisymmetric about the loading axis so that at the loading
center the slope equals zero. Furthermore, according to Alpan and
Leshchinsky [18], the plate deflections beyond a distance of R measured
from the loading center are very small and can be neglected for practical
purposes. The distance R is a function of the radius of the loaded area
and the stiffness of the system and can be estimated from the following

equation:
R = zf(ro/z) (32)

where

r° = radius of loaded area

% = characteristic length = 4\/5/k

Other notations have bLeen defined earlier. Also, available solutions [19,20]
indicate that the deflected shape of the plate is oscillatory and has

its first two zeros at 3.92 ¢ and 8.36 2. In this analysis, the larger
value of 8.36 2 and that computed from Eq. (32) is used to determine the

radius of the plate.
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With the use of this distance, the infinite plate may be approximated
by a circular plate having a radius equal to R and the loading acting
at the center of the plate. Thus, for the problem under consideration,

the shear input and boundary conditions are

_ P
Shear V]x=o it e (34)
o
Slope wt]x=o = w]x=o =0 (35
Deflection yt]x=L = v]x=L =0 (36)

where r, is the radius of the loaded area, w and v are angular and

linear velocities, respectively, and t denotes time.

Using the preceding physical laws, constitutive equations, boundary
conditions and the damping equations described in an earlier chapter, the
computer program developed by Koenig [16] for circular plates with clamped
edges are modified and extended to suit the condition of infinite plates
on elastic foundation. The final computer program is included in Appendix

B.

4.2 Response to Step Sustained Loading

The developed computer program is used to analyze the response of

a 4-in. thick infinite plate on elastic foundation to a step pulse loading,
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the loading has a magnitude of 100 1lb. and is uniformly distributed

over a circular area 0.2 in. in radius. The duration of the loading is

4 sec., which is long enough to be considered as a sustained loading. The
plate has a Young's modulus of 3 x 106 psi and a Poisson's ratio of 0.20.
The supporting foundation is a weightless linear spring having a spring
constant of 1 x 104 pci. In the analysis, the 4-in. thick infinite plate
is approximated by a circular plate with a radius of 50 in. A cell length
of 0.2 in. is used and a time constant of 30 usec is selected in order

to obtain an over~damped response.

The analyzed deflection, moment and shear are plotted against time
in Figures 33, 34 and 35, respectively. As would be expected, the response
at a point increases with increasing time. In general, the shape of the

curves resembles that of the curves for beam on elastic foundation.

4.3 Response to Sinusoidal Loading

An analysis is also made for the response of the same plate to a
sinusoidal vertical loading. The intensity of the loading is also 100 1b.,
the frequency of excitation is 36000 t. Other conditions including plate
modulus, Poisson's ratio, spring constant, cell length and time constant
are the same as that used for the beam analyzed previously. Results
of the analysis are presented in Figures 36 (plate deflection), 37 (moment)

and 38 (shear).

PR U e T R
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5. SUMMARY AND CONCLUSIONS

As a step toward the development of a computer program for analyzing
the response of elastic layered systems to dynamic loading, the Method
of Direct Analysis was used to analyze the dynamic response of infinite
beams and plates on elastic foundation. The Method of Direct Analysis
uses only the impulse-momentum laws and constitutive relations but by-
passes the explicit use of differential equations. As a result of the
research, two computer programs were developed, one for infinite beams
and the other for infinite plates both on elastic foundations. The
computer programs are capable of handling various types of dynamic
loading such as sinusoidal, impulse, and sustained loadings. Also,

both linear and nonlinear spring supports can be considered.

To demonstrate the effectiveness of the developed computer programs,
response analyses were made for sustained, pulse and sinusoidal loadings.
For the sustained loading on an infinite beam, both over-damped and
under-damped conditions were analyzed. Also, under the pulse loading,
the beam was analyzed for nonlinear spring support. The results for
sustained loading on an infinite beam were compared with an available
exact solution. An excellent agreement with the exact solution was

obtained.

The results of the study indicate that the Method of Direct Analysis
is an effective tool for dynamic response analysis. It appears feasible

that a computer program for response analysis of elastic layered systems
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to dynamic loading can be developed based on the principle of the Method
of Direct Analysis.

DT gt RTINS " o g
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6. RECOMMENDATIONS FOR FURTHER RESEARCH

The computer programs developed from this research are based on
the assumption that the elastic foundation is a weightless Winkler medium.
Therefore, further research is needed to extend and modify the computer
programs to suit elastic layered systems. To achieve the ultimate goal
of developing a program for nondestructive pavement testing (NDPT), the

following steps of research are recommended:

1. The dynamic response of a composite plate consisting of two
different materials and supported by a Winkler medium should
be studied. Results of the analytical investigation should

be validated experimentally.

2. Results of the study on composite plate should be extended
to the condition of an infinite plate supported by an isotropic
elastic half-gpace. Field testing should be conducted to

validate the computer program thus develaped.

3. Extend the computer program developed above to the condition
of a composite plate on an isotropic elastic half-space. This
phase of research should also be accompanied by full-scale

field testing.
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APPENDIX A

Computer Program for Infinite Beam

on Elastic Foundation
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// EXEC PGM=1EFBRl4
//D DD DSN=MEN.P11850.A3B.PLOT,DISP=(0OLD,DELETE),
// Y OL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B8.PLOT1,DISP=(0OLD,DELETE),
// Y OL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT2,DISP=(OLD,DELETE),
// VOL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT3,DISP=(0OLD,DELETE),
!/ VOL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT4,DISP=(OLD,DELETF),
/! VOL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOTS5,DISP=(OLD,DELETE),
// VOL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT6,DISP=(OLD,DELETE),
/1! Y OL=REF=MEN.P11850.A3B.LIB
// EXEC FGCLG,PARM="NOSOURCE~
//SYSIN DD *

REAL YB(900),XB(900)

LOGICAL*1 SYMA/“"“/,SYMB/”,”/,SYMC/".”/

REAL*4 D(6,600)

INTFGER*2 A(600),B(600),C(600)

LOGICAL*1 LABEL(40,2)
ARXRARARERARERRRARRRARRERRARAERRARRRRRARRARRRRARRARAAN AR AN AR AR A kR kdk

c INFINITE BEAM ON ELASTIC FOUNDATION

e e e e e dede e e e e Fe e e ok ek ek ok de de e ek ke e e de ek o e e e ek e ek e e e e e ke ek
SHEAR AND FLEXURAL WAVES BASED ON DYNAMIC LAWS

UNITS IN LB~IN-SEC SYSTEM

POSITIVE SIGN COWENTION LISTED AFTER DEFINITION

ATM
AIN
ATV
AS
Cl
c2
DEN
DT
DS
DTD
DTR
DX
EM
ESR
FMT
G
IDENT
™
INI

ANGULAR IMPULSE DUE TO MOMENT LB-IN-SEC.
AREA CONTRIBUTING TO DYNAMIC INERTIA IN**2
ANGULAR IMPULSE DUE TO SHEAR LB-IN-SEC.
EFFECTIVE SHEAR CARRYING ARFA IN**2
DILATATION WAVE VELOCITY IN/SEC.
SHEAR WAVE VELOCITY IN/SEC.
WEIGHT DENSITY OF BEAM MATERIAL LB/CU IN.
TIME INCREMENT SEC.
DISTANCE SCALE FACTOR IN.
TIME INCREMENT-DILATATIONAL WAVE SEC.
TIME INCREMENT-SHEAR WAVE SEC.
CELL LENGTH IN.
YOUNG”S MODULUS OF ELASTICITY PSI.
FOUNDATION SPRING CONSTANT PSI.
PRINT FORMAT FOR X-T DIAGRAMS
SHEAR MODULUS OF RIGIDITY PSI.
TITLE OF RUN
NO. OF CELLS INTO WHICH BEAM IS DIVIDED
MOMENT OF INERTIA WHICH CONTRIBUTES RESISTANCE
TO BENDING IN**4
INB = MOMENT OF INERTIA WHICH CONTRIBUTES RESISTANCE

TO DYNAMIC INERTIA IN**4
IPP = O PLOT THE DATA
ppP 1 PRINT THE DATA
1PP 2 PRINT AND PLOT THE DATA

QAN O0000O00O0000O00




OO0 00O00O000000000000O0000aa00a00000000000~0

IPR
KKM
KKM1
KKM2

KS

LIQ

LIQQ
LIV

MOM
MS
MO
NAME

OMEGA

OMGS
oMoM
PSI

PSIPS
PSIS

QQo0
RHO

TAUL
TAU2

TL
TLB

TT
Tl
T3

VEL
VELS
VELVE

("SI O R I O B R R BB B |

v
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NO. OF COLUMNS OF PRINTOUT IN A PAGE

TIME CONTROL INDEX FOR THE FIRST RESPONSE~DIST. CURVE

TIME CONTROL INDEX FOR THE SECOND RESPONSE-DIST. CURVE
TIME CONTROL INDEX FOR THE THIRD RESPONSE-~DIST. CURVE

TIME CONTROL INDEX FOR TERMINATING COMPUTATION

SHEAR CORRECTION FACTOR

LENGTH OF BEAM IN.
LINEAR IMPULSE DUE TO FOUNDATION REACTION LB-SEC.
LINEAR IMPULSE DUE TO DISTRIBUTED LOAD LB-SEC.
LINEAR IMPULSE DUE TO SHEAR LB-SEC.
SCALED VALUE OF MOMENT

INTERNAL BENDING MOMENT - CW ON LEFT IN-LB.
MOMENT SCALE FACTOR IN-LB.
GIVEN APPLIED MOMENT AT X=0 IN-LB.

NAME OF MATERTAL OF BODY

POISSON”S RATIO

VELOCITY OF ROTATION OF CROSS-SECTION,

D(PSI)/DT - CLOCKWISE RAD/SEC.
ANGULAR VELOCITY SCALE FACTOR RAD/SEC.
SCALED VALUE OF ANGULAR VELOCITY

= ROTATION OF CROSS-SECTION ABOUT THE NEUTRAL

LI T I TR D N I R DA T N N RN DR NN R RN ]

AXIS - CW ON LEFT RAD.
SCALED VALUE OF ROTATION

ROTATION SCALE FACTOR RAD.
INTENSITY OF UNIFORMLY DISTRIBUTED EXTERNAL

LOADING - DOWNWARD LB/IN.
INPUT VALUE OF DISTRIBUTED LOAD LB/IN.
MASS DENSITY OF BEAM MATERIAL LB-SECX#*2 /I N**
TIME SEC.
DAMPING TIME CONSTANT FOR OMEGA SEC.
DAMPING TIME CONSTANT FOR VELOCITY SEC.

TIME CLOCK WHICH REGULATES DILATATIONAL WAVE SEC.

THE PREVIOUS TD OR TR SEC.

ONE TIME SEGMENT BEFORE TL SEC.

TIME CLOCK WHICH REGULATES SHEAR WAVE SEC.

TIME SCALE FACTOR SEC.
SCALED VALUE OF TIME

DURATION OF MOMENT PULSE AT X=0 SEC.
DURATION OF VELOCITY PULSE AT X=0 SEC.

VERTICAL SHEAR ON A CROSS-SECTION -UP ON LEFT LB.
VELOCITY OF DEFLECTION, D(Y)/DT - DOWNWARD IN/SEC.

LINEAR VELOCITY SCALE FACTOR IN/SEC.
SCALED VALUE OF LINEAR VELOCITY

SHEAR SCALE FACTOR L8,
SCALED VALUE OF SHEAR

GIVEN APPLIED SHEAR AT X=0 LB.
AXTAL COORDINATE ALONG LENGTH OF BEAM MEASURED

FROM LEFT END IN.
DEFLECTION - DOWNWARD IN.
DEFLECTION SCALE FACTOR IN.

SCALED VALUE OF DEFLECTION

MAIN PROGRAM

DIMENSIONX(400),V(400),VEL(400),Y(400),PSTI(400),0MEGA(400) ,VV (400)




71

1,YEWE(400),0MOM(4N0),YY(400) ,PSTIPS(400),Q(4N0) ,YB1(90N),YB2(200)
REALINB, INI, L,MOM(400) MO, ,MS, MM(400),NU,KS,MASS, INERT
LOGICAL*1IDENT(30),FMT(80), NAME(10)
COMMONT, X, G, M, L,MOM,V ,C1,C2,Q,VEL,Y,RHO,DEN, PST ,OMEGA, INB, INI ,AIN
1,AS,KS,M0,YN, T1,T3,DT,DX, TS, MS,VS,VELS, OMCS, TT, VY MM VELVE  OMOM, IM
1,KM, IPR,MASS, INERT,KKM, PSIPS, PSIS, YS, IMO, TAUL, TAU2, 00N, FESR, BETA
1, KKM1, KKM2
1 READ 801, IDENT,FMT
READ 802, NAMF,DEN,EM, L, NU,DX,AIN,KS
IF(DEN) 500,500, 3
3 READ 803,M0,V0,T1,T3,TS,VS,VELS,YS
READ 804 ,KM,IPR, INB,MS,PSIS,OMGS, TAUL, TAU2
READ 8N5,ESR,KKM,KKM1,KKKM2, IPP, JS
G=EM/(2.0%(1.0+NU))
RHO=DEN/386.0
AS=KS*AIN
INI=INB
Cl=(((EM*TINB)/(RHO*INI))**0.5)
C2=(((AS*G)/(RHO*AIN))**0.5)
MASS=RHO*AIN*DX
INERT=RHO*I NI *DX
BETA=(ESR/ (4 .0*EM*XINB) )**0. 25
DT=DX/(C1)
GAMMA=EM/ ( G*KS)
c DIVISION OF BEAM INTO ELEMENTS
X(1)=0.0
DO 101 I=1,400
X(1+1)=X(1)+DX
IF(ABS(X(I+1)-L)-DX/2.0) 10,10,101
10 IM=I
GO TO 11
1Nl CONTINUE
11 IMO=IM+1
PRINT 900, IDENT
PRINT 901, NAME,DEN, RHO,EM, G,ESR, NU
PRINT 902,L,AS,AIN,INB, INI,TAUL, TAU2
PRINT 903,C1,C2
PRINT 904,M0,v0,T1,T3
PRINT 905,DT,DX,TS,VS,VELS,OMGS,MS,PSIS,YS
PRINT 906, IM,KM, IPR
c PRINTOUT OF CELL BOUNDARY COORDINATES
PRINT 9266 .
PRINT 907,(I,X(1),I=1,1IMO0)
DO 909 M=11,13
909 REWIND M
DO 910 M=20,22
910 REWIND M
CALL BEAM
Rk fdedkhd
PRINT INSTRUCTIONS
IF(IPP.EQ.0) GO TO 500
IA=]
IM2=1PR
30 DO 912 M=11,13
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912 RFWIND M

913
24

25

104

105

106

107

108

4108

37

800
801
802
803
804
805
900
901

WM

DO 913 M=20,22

REWIND M

TF(IM+1-IM2) 24,24,25

IM2=TIM+1

X-T DIAGRAM FOR MOMENT

PRINT 908

DO 104 K=1,KM

READ (11) TT,MM(1),VV(1),(MM(I),I=1,bIMO)
PRINT FMT, TT,MM(1),VV(1),(MM(1),I=IA, IM2)
X-T DIAGRAM FOR SHEAR

PRINT 1909

DO 105 X=1,KM

READ (12) TT,MM(1),VV(1),(VV(1),I=1,IMO)
PRINT FMT,TT,MM(1),VV(1),(VV(I),I=IA,IM2)
X-T DIAGRAM FOR LINEAR VELOCITY

PRINT 1910

DO 106 K=1,KM

READ (20) TT,MM(1),VV(1),(VEIVE(I),I=1,IMO)
PRINT FMT,TT,MM(1),VV(1),(VEIVE(I),I=IA, IM2)
X-T DIAGRAM FOR DEFLECTION

PRINT 911

DO 107 K=1,KM

READ (21) TT,MM(1),vV(1),(YY(I),I=1,IMO)
PRINT FMT, TT,MM(1),VV(1),(YY(T),I=IA, IM2)
CONTINUE

X-T DIAGRAM FOR ANGULAR VELOCITY

PRINT 1912

DO 108 K=1,KM

READ (22) TT,MM(1),VV(1l),(OMOM(I),I=1,6IMO)
PRINT FMT, TT,MM(1),VV(1),(OMOM(I),I=IA,IM2)
X~T DIAGRAM FOR ANGLE OF ROTATION

PRINT 4913

DO 4108 K=1,KM

READ (13) TT,MM(1),VvV(1),(PSIPS(I),I=1,IMO)
PRINT FMT,TT,MM(1),VV(1),(PSIPS(I),I=IA,IM2)
IF(IM-IM2) 500,500,37

TA=TA+IPR

IM2=IM2+1PR

GO TO 30

IF(IPP.EQ.1) GO TO 501

FORMAT(80A1)

FORMAT(80A1/80A1)
FORMAT(10A1,F10.2,E10.2,3F10.2,E10.2,F10.2)
FORMAT(8E10.2)

FORMAT(2110,6E10.2)
FORMAT(E10.2,4110,F10.2)
FORMAT(1HD,80A1//)
FORMAT(26HOMATERIAL =
, 24HOWEIGHT DENSITY DEN = ,F8.3,20H LBS/IN**3
, 24HOMASS DENSITY RHO = ,F8.6,20H LB/SECR#*2/IN**4
, 24HOYOUNGS MODULUS E = ,E8.2,204H PSI
,24HOMOD. OF RIGIDITY G = ,F8.2,20H PSI

o - -: -‘4: h-—_-m ;’;’w " — v - ~ e I -

,10A1

e e e




5
6

, 24HOPOISSONS RATIO
902 FORMAT(24HOLENGTH OF BEAM
24HOSHEAR AREA
24HOINERTIA AREA
24HOBEND. MOM. IN.
24HOINERTIA MOM. IN.
2400 TAUL
24H0 TAU2
903 FORMAT(24HOMOMENT WAVE

1 24HOSHEAR WAVE
904 FORMAT(24HOX=0 MOMENT PULSE
24H0X=0 VELOC PULSE

BV I OS I S B

W N -

905 FORMAT(24HOTIME INCREMENT
24HOCELL LENGTH

24HOMOMENT SCALE FAC
24HOANG SCALE FACTOR

W NI W

906 FORMAT(24HONO. OF CELLS

24HODEF SCALE FACTOR

,24HOMOD. OF SUB. REAC.ESR =

NU =
L =
AS =

AIN =

INB =

INI

TAUL

TAU2
Ccl
c2
MO =
Vo =

24H0X=0 MOM. PULSE DUR.Tl=
24H0X=0 VEL PULSE DUR.T3 =

DT =
DX =

24HOTIME SCALE FACTOR TS =
24HOSHEAR SCALE FACTOR VS=
24HOVEL SCALE FACTOR VELS=
24HOANG VEL SCALE FAC OMGS=

TOR MS=
PSIS=
YS=
IM =

1 24HOTOT. TIME INTERVALS KM=
2 24HONO. COLS. PRINTED IPR=

907 FORMAT(I4,F8.4)

908 FORMAT(1H!,2X,”TIME",5X, "PULSE~,24X, “MOMENT
911 FORMAT(1H1,2X,”TIME”,5X, PULSE”,21X, “DEFLECTION
1909 FORMAT(1H1,2X,”TIME”,5X, PULSE",24X, “SHEAR

73

,E8.2,208 PSI
,F8.2 ,20H
,F8.3,20H IN
LF8.2,17H IN**2
,F8.2,17H IN**2
JF8.2,17H IN**4
LF8.2,17H IN**4
,E8.2,17H 1/SEC
,E8.2,17H 1/SEC
,F8.0,20H IN/SEC
,F8.0,20H IN/SEC
,F8.2, 204 IN-LB
,F8.2,20H LB
,E8.2,20H SEC
,E8.2,20H SEC
,E8.2,20H SEC
,F8.5,20H IN
,E8.2,20H SEC
,E8.2,20H LB
,E8.2,20H IN/SEC
,E8.2,20H RAD/SEC
,E8.2,20H IN-LB
,E8.2,20H RAD
,E8.2,208 IN
,14,174

,14,17H

, 14, 1111
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PROPAGATION” /)
PROPAGATION"/)
PROPAGATION"/)

1910 FORMAT(1H1,2X, " TIME",5X, PULSE”,16X, LINEAR VELOCITY PROPAGATION"

1/)

1912 FORMAT(1H1,2X,”TIME~,5X, PULSE”,15X, ANGULAR VELOCITY PROPAGATION

17/)

4913 FORMAT(1H1,2X, TIME”,5X, “PULSE”, 23X, "ROTATION

9266 FORMAT(1HS,2X,"I°,3X%,"X(I)"
500 REWIND 21
DO 127 K=1,KM

D)

PROPAGATION"/)

READ (21) TT,MM(1),VV(1),(YY(1),I=1, IMO)

XB(K)=TT
YB(K)=YY(1)
YB1(K)=YY(4)
YB2(K)=YY(7)

127 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,30)
READ(S5,800) (LABEL(J,1),J=1
READ(5,800) (LABEL(J,2),J=1
SET GRPHIT ARGUMENT VALUES.
N=KM
LOGX=0
LOGY=0
XAXIS=8.0

,40)
,40)




YAXIS=5.0
XMIN=N.0
NXDEC=5
XINC=20.0
YMIN=-10.0
NYDEC=5
YINC=4.0
XSMIN=0.0
XSMAX=100.0
YSMIN=-10.0
YSMAX=10.0
NDECX=1
NDECY=1
HT=0.15
HTS=0.15
ICON=N
CALL PLOTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMIN, XINC, NXDEC,
1 YMIN,YINC, NYDEC, LABEL,XSMIN, XSMAX, YSMIN, YSMAX, XB, SYMA, ICON, HT,
1 NDECX, NDECY,HTS)
DO 130 I=1,N
130 YB(I)=YBI(I)
ICGN=0
CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 71 I=1,N
71 YB(I)=YB2(I)
ICON=0
CALL SAMEP(YB,N,XB,SYMC, ICON)
CALL EPLOT
REWIND 12
DO 128 K=1,KM
READ (12) TT,MM(1),VV(1),(VV(I),I=1,IMO)
XB(K)=TT
YB(K)=/V (1)
YB1(K)=VV (4)
YB2(K)=V (7)
128 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,31)
READ(5,800) (LABEL(J,1),J=1,40)
READ(5,800) (LABEL(J,2),J=l,40)
c SET GRPHIT ARGUMENT VALUES.
N=KM
LOGX=0
LOGY=0
XAXIS=8.0
YAXIS=5.0
KMIN=0.0
NXDEC=5
XINC=20.0
YMIN=-10.0
NYDEC=5
YINC=4.0
XSMIN=0.0
XSMAX=100.0
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72

73

129

YSMIN=-10.0
YSMAX=10.0
NDECX=1
NDECY=1
HT=0.15
H1S=0.15
ICON=0

CALL PLOTIT(YB,N, LOGX,LOGY,XAXIS,YAXIS,XMIN,XINC, NXDEC,

75

1 YMIN,YINC,NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB, SYMA, ICON, HT,

1 NDECX,NDECY,HTS)

DO 72 I=1,N

YB(I)=YB1(I)

ICON=0

CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 73 I=1,N

YB(I)=YB2(I)

ICON=0

CALL SAMEP(YB, N,XB,SYMC, ICON)
CALL EPLOT

REWIND 11

DO 129 K=1,KM

READ (11) TT,MM(1),VV(1),(MMCI),I=1,IMO)
XB(K)=TT

YB(K)=MM(1)

YB1(K)=MM(4)

YB2(K)=MM(7)

CONTINUE

CALL INITQ(A,B,C,D,600)

CALL STSWQ(4662,32)
READ(5,800) (LABEL(J,1),J=1,40)
READ(5,800) (LABEL(J,2),J=1,40)
SET GRPHIT ARGUMENT VALUES.
N=KM

LOGX=0

LOGY=0

XAX1S=8.0

YAXIS=5.0

XMIN=0.0

NXDEC=5

XINC=20.0

YMIN=-10.0

NYDEC=5

YINC=4.0

XSMIN=0.0

XSMAX=100.0

YSMIN=-10.0

YSMAX=10.0

NDECX=1

NDECY=1

HT=0.15

HTS=0.15

ICON=N

CALL PLOTIT(YB, N, LOGX, LOGY,XAXIS,YAXIS,XMIN,XINC, NXDEC,

1 YMIN,YINC,NYDEC, LABEL,XSMIN,KXSMAX, YSMIN, YSMAX, XB,SYMA, ICON, HT,




76

1 NDECX, NDECY, HTS)
DO 74 I=1,N
74 YB(1)=YB1(I)
ICON=0
CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 75 I=1,N
75  YB(I)=YB2(I)
ICON=0
CALL SAMEP(YB,N,XB,SYMC, ICON)
CALL EPLOT
REWIND 21
DO 131 K=1,KM
READ (21) TT,MM(1),VV(1),(YY(I),I=1,IMO)
IF(K.NC.KKM.AND.K.NE.KKM1.AND.K. NE.KKM2) GO TO 131
DO 231 I=1,IMO
XB(I)=X(1)
IF(K.EQ.KKM) YB(I)=YY(I)
TF(X.EQ.KKM1) YB1(I)=YY(I)
IF(K.EQ.KKM2) YB2(I)=YY(I)
231 CONTINUE
131 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,33)
READ(5,800) (LABEL(J,1),J=1,40)
READ(S5,800) (LABEL(J,2),J=1,40)
c SET GRPHIT ARGUMENT VALUES.
N=IMO
LOGX=0
LOGY=N
XAXIS=8.0
YAXIS=5.0
XMIN=0.0
NXDEC=5
XINC=0.2*%DS
YMIN=-10.0
NYDEC=5
YINC=4.0
XSMIN=0.0
XSMAX=DS
YSMIN=~10.0
YSMAX=10.0
NDECX=1
NDECY=1
HT=0.15
HTS=0.15
ICON=0
CALL PLOTIT(YB,N,LOGX, LOGY,XAXIS, YAXIS, XMIN,XINC, NXDEC,
1 YMIN,YINC, NYDEC, LABEL,XSMIN, XSMAX, YSMIN, YSMAX, XB,SYMA, ICON, KT,
1 NDECX, NDECY,HTS)
DO 76 I=1,N
76 YB(I1)=YBI(I)
ICON=0
CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 77 1=1,N
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232
132

78

79

77

YB(1)=YB2(1)

ICON=0

CALL SAMEP(YB, N,XB,SYMC, ICON)
CALL EPLOT

REWIND 12

DO 132 K=1,KM

READ (12) TT,MM(1),VV(1),(VV(T),I=1,1IMO0)
IF(K.NE.KKM.AND.K.NE.KKM1.AND.K. NE.KKM2) GO TO 132
DO 232 I=1,IMO

XB(I)=X(1)

IF(K.EQ.KKM) YB(L)=V (L)
IF(K.EQ.KKM1) YB1(I)=VV (1)
IF(K.EQ.KKM2) YB2(I)=V (1)
CONTINUE

CONTINUE

CALL INITQ{A,B,C,D,600)

CALL STSWQ(4662,34)

READ(5,800) (LABEL(J,1),J=1,40)
READ(5,800) (LABEL(J,2),J=1,40)
SET GRPHIT ARGUMENT VALUES.
N=IMO

LOGX=0

LOGY=0

XAXIS=8.0

YAXIS=5.0

XMIN=0.0

NXDEC=5

XINC=0.2*DS

YMIN=~10.0

NYDEC=5

YINC=4.0

XSMIN=0.0

XSMAX=DS

YSMIN=-10.0

YSMAX=10.0

NDECX=1

NDECY=1

HT=N.15

HTS=0.15

ICON=0

CALL PLOTIT(YB,N, LOGX,LOGY,XAXIS, YAXIS, XMIN,XINC, NXDEC,
1 YMIN, YINC,NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB,SYMA, ICON, HT,
1 NDECX, NDECY,HTS)

DO 78 I=1,N

YB(I)=YB1(1)

ICON=0

CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 79 1I=1,N

YB(1)=YB2(I)

ICON=0

CALL SAMEP(YB, N, XB,SYMC, ICON)
CALL EPLOT

REWIND 11

DO 133 X=1,KM
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READ (11) TT,MM(1),VV(1),(MM(I),I=1,IMO)
IF(K.NE.KKM.AND.K. NE.KKM1.AND.K.NE.KKM2) GO TO 133
DO 233 I=1,IM0
XB(I)=X(I)
IF(X.EQ.KKM) YB(T)=MM(T)
IF(K.EQ.KKM1) YB1(I)=MM(I)
IF(K.EQ.KKM2) YB2(I)=MM(I)

233 CONTINUE

133 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,35)
READ(5,800) (LABEL(J,1),J=1,40)
READ(5,800) (LABEL(J,2),J=1,40)

c SET GRPHIT ARGUMENT VALUES.

N=IMO
LOGX=0
LOGY=0
XAXIS=8.0
YAXIS=5.0
XMIN=0.0
NXDEC=5
XINC=0, 2*DS
YMIN=-10.0
NYDEC=5
YINC=4.0
XSMIN=0.0
XSMAX=DS
YSMIN=-10.0
YSMAX=10.0
NDECX=1
NDECY=1
HT=0.15
HTS=0.15
ICON=0
CALL PLOTIT(YB,N,LOGX, LOGY,XAXIS, YAXIS,XMIN, XINC, NKDEC,
1 YMIN,YINC,NYDEC,LABEL,XSMIN,XSMAX, YSMIN, YSMAX, XB,SYMA, ICON, HT,
1 NDECX, NDECY,HTS)
DO 81 I=l,N

81 YB(I)=YB1(I)
ICON=0
CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 82 I=1,N

82  YB(I)=YB2(1)
ICON=0
CALL SAMEP(YB, N,XB, SYMC, ICON)
CALL EPLOT
YB(1)=0.0
YB1(1)=0.0
YB2(1)=0.0
REWIND 21
DO 136 K=1,KM
READ (21) TT,MM(1),VV(1),(YY(I),I=1,IMO)
IF(K.NE.KKM.AND. K. NE.KKM1.AND.K. NE.KKM2) GO TO 136
DO 236 I=1,IM




236
136

84

85

501

XB(I)=X(1)

IF(K.EQ.KKM) YB(I+1)=(YY(I+1)-YY(I))/DX
IF(K.EQ.KKM1) YBI(I+1)=(YY(I+1)-YY(I))/DX
IF(K.EQ.KKM2) YB2(TI+1)=(YY(I+1)-YY(I))/DX
CONTINUE

CONTINUE

CALL INITQ(A,B,C,D,600)

CALL STSWQ(4662,36)

READ(5,800) (LABEL(J,1),J=1,40)

READ(5,800) (LABEL(J,2),J=1,40)

SET GRPHIT ARGUMENT VALUES.

N=IMO

LOGX=0

LOGY=0

XAXIS=8.0

YAXIS=5.0

XMIN=0.0

NXDEC=5

XINC=N.2*DS

YMIN=-1.0

NYDEC=5

YINC=0.4

XSMIN=0.0

XSMAX=DS

YSMIN=-1.0

YSMAX=1.0

NDECX=1

NDECY=1

HT=0.15

HTS=0.15

ICON=0

CALL PLOTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS, XMIN, XINC, NXDEC,

1 YMIN,YINC, NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB, SYMA, ICON, HT,

1 NDECX, NDECY, HTS)

DO 84 I=1,N

YB(1)=YB1(I)

ICON=0

CALL SAMEP(YB,N,XB,SYMB, ICON)

DO 85 I=1,N

YB(I)=YB2(1)

ICON=0

CALL SAMEP(YB,N,XB,SYMC,ICON)

CALL EPLOT

STOP

END

SUBROUTINE BEAM

DIMENSIONX(400),V (400) ,VEL(400),Y(400),PSI(400),0MEGA(400) ,VV (400)
1 ,VELVE(400),0MOM(400),YY(400),PSIPS(400) ,AIM(400) ,ATV (400),Q(400)
REALINB, INT, L,MOM(400),M0,MS,MM(400) , NU, KS,MASS, INERT, LIV (400),L1Q
1(400)

LOGICAL*1IDENT(80),FMT(80), NAME(10)

COMMONT, X, G, EM, L,MOM,V ,C1,C2,Q,VEL, Y,RHO, DEN, PST,OMEGA , INB, INT ,AIN
1,AS,KS,MO0,V0, T1, T3,DT,DX, TS,MS,VS ,VELS,, OMGS, TT,VV ,MM,VELVE , OMOM, IM
1,KM, IPR,MASS, INERT,KKM,PSIPS,PSIS, YS, IMO, TAU1, TAU2,QQO, ESR, BETA
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119

110

1m

1492

113

114
115

116

103

1,KKM1, KKM2

PRINT 921

INITIAL STATE OF BODY

DO 119 I=1,IMO

AIM(I)=0.0

AIV(I)=0.0

LIV(I)=0.0

LIQ(I)=0.0

LIQQ(1)=0.0

MOM(1)=0.0

OMEGA(I)=0.0

PSI(I)=0.0

V(1)=0.0

VEL(I)=0.0

Y(1)=0.0

QQ=QQ0

DTD=DX/(C1)

DTR=DX/(C2)

T=0.0

TD=0.0

TL=0.0

TLB=0.0

TR=0.0

DO 101 K=1,KM

TT=T/TS

**AINPUT AT X=0, MOMENT BOUNDARY CONDITION*#**
IF(T-T1) 110,111,111

MOM( IMO)=MO

GO TO 1492

MOM(IMO)=0.0

CONTINUE

***INPUT AT X=0, SHEAR BOUNDARY CONDITION***
IF(T-T3) 113,114,114

v(1)w0

GO TO 115

v (1)=0.0

CONTINUE

#*4REACTION OF ELASTIC FOUNDATION**#
DO 116 I=1,IM
Q(Y)=~ESR*Y(I)/(1+ESR*Y(1)/100.0)
CONTINUE

SCALING FOR PRINTOUT

1Z2Z=IMO

DO 103 I=1,122

MM(I)=MOM(1)/MS

OMM( I )=OMEGA(1)/0MGS
PSIPS(1)=PSI(I)/PSIS
VEWE(I)WEL(I)NELS

YV (1) (IINS

YY(I)=Y(I)/YS

CONTINUE

WRITE (11) TT,MM(1),VV(1),(MM(1),I=1,IMO)
WRITE (12) TT,MM(1),VV(1),(VV(1),I=1,IMO)
WRITE (13) TT,MM(1),VV(1),(PSIPS(1),I=1,IMO)
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WRITE (20) TT,MM(1),VV(1),(VEWE(I),I=1,IMO)
WRITE (21) TT,MM(1),VV(1),(YY(I),I=l,IMO)
WRITE (22) TT,MM(1),VV(1),(OMOM(1),I=1, IMO)
IF(ABS(TD-(T+DT))-0.1E-10) 19,19,89
IF(TD~-TR) 15,15,16
IF(TD+DTD-TR-DTR) 15,15,13
PROPAGATION PROCEDURE
THE Cl WAVE
DO 108 I=2,IMO
ANGULAR IMPULSE DUE TO MOMENT
AIM(T)=(MOM(T~-1)-MOM(1))*DTD+AIM(I)
ANGULAR IMPULSE DUE TO SHEAR
AIV (I)=(V (I-1)+V (1) )*DX*(TDHDTD-TL)/2.0+AIV (1)
CUMULATE LINEAR IMPULSE DUE TO THIS SHEAR
LIV(I-1)=LIV (I-1)+( (1)=V (I-1))*( TD+DTD-TL)
DAMPING, FIRST HALF
IF(TAUl-1.0E+40) 930,928,928
DOMG=(-1.0)*OMEGA(T)*(DTD/TAU1)
OMECGA(I)=OMEGA( I )+(DOMG*0.5)
IMPULSE-MOMENTUM ACROSS C1l
DOM=(AIM(I)+AIV(I))/INERT
OMEGA( I )=OMEGA(I )}+DOM
BOUNDARY CONDITION FOR OMEGA
OMEGA(1)=0.0
PSI(1)=0.0
DAMPING, SECOND HALF
IF(TAU1-1.0E+40) 9113,815,815
DOMG=(-1.0)*OMEGA( I Y*(DTD/TAUL)
OMEGA( I )=OMEGA(I )+(DOMG*0.5)
INITTALIZE ANGULAR IMPULSES AFTER USE
AIV(1)=0.0
AIM(1)=0.0
CONTINUE
TD=TDHDTD
TLB=TL
TL=TD
DO 107 I=1,IM
DALPH=( (OMEGA( I+1 )-OMEGA(I))*DTD)/DX
CONSTITUTIVE EQUATION FOR INCREMENTAL MOMENT
DMOM=(~1.0)*EM*T NB*DALPH
CUMULATE MOMENT
MOM( T )=MOM( I )+DMOM
CUMULATE SHEAR (ENTIRE OMEGA PORTION)
¥ (141 )= (141 )-AS*G*OMEGA( I+l ) *DTD
ROTATION
PSI(I+1)=PSI(I+l)+(OMEGA(I+1)*DTD)
CONTINUE
GO TO 12
THE C2 WAVE
DO 104 Is=1,IM
LINEAR IMPULSE DUE TO FOUNDATION REACTION
LIQ(I)=Q(I)*DX*DTR+LIQ(I)
LINEAR IMPULSE DUE TO SHEAR
LIV(I)=(V (I+1)=V (1)) *(TR+DTR-TL)+LIV (1)
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c CUMULATING ANGULAR IMPULSE DUE TO SAME SHEAR
AIV (I+1)=AIV (I+1)+0.5*(V (I )4V (I+1 ) )*DX*( TR+DTR-TL)
c DAMPING, FIRST HALF
IF(TAU2-1.0E+40) 925,931,931
925 DVELG=(-1.0)%WEL(I)*(DTR/TAU2)
VEL(I)=VEL(I)*+(DVELG*0.5)

C IMPULSE-MOMENTUM ACROSS C2
931 DVEL=(LIV(I)+LIQ(I))/MASS
VEL(I)=VEL(I)*IVEL
c BOUNDARY CONDITION FOR VELOCITY
VEL(IM+1)=0.0
C DAMPING, SECOND HALF

IF(TAU2-1.0E+40) 927,818,818
927 DVELG=(-1.0)®EL(I)*(DTR/TAU2)
VEL(I)=VEL(I )+(DVELG*).5)
c INITIALIZING LINEAR IMPULSES AFTER USE
818 LIV(I)=0.0
LIQ(I)=0.0
104 CONTINUE
TR=TR+DTR
TLB=TL
TL=TR
DO 102 I=1,IM
c LINEAR STRAIN
DSTRN=( (VEL(I+1 )VEL(I))*DTR)/DX
C CONSTITUTIVE EQUATION FOR INCREMENTAL SHEAR (VELOCITY PORTION)
DV =AS*G*DSTRN
c CUMULATE SHEAR
V (I+1 )=V (I+1 +DV
c DEFLECTION
Y(I)=Y(I)+(VEL(I)*DTR)
102 CONTINUE
GO TO 12
19 CONTINUE
T=T4+DT
101 CONTINUE
ENDFILE 11
ENDFILE 12
ENDFILE 13
ENDFILE 20
ENDFILE 21
ENDFILE 22
921 FORMAT(1H1)
500 RETURN
END
//DATA.FT11FO01 DD UNIT=SYSDA,SPACE=(TRK,(20,10),RLSE)
//DATA.FT12F001 DD UNIT=SYSDA,SPACE=(TRK,(20,10),RLSE)
//DATA.FT13F001 DD UNIT=SYSDA,SPACE=(TRK,(20,10),RLSE)
//DATA.FT20FO01 DD UNIT=SYSDA,SPACE=(TRK,(20,10),RLSE)
//DATA.FT21F001 DD UNIT=SYSDA,SPACE=(TRK,(20,10),RLSE)
//DATA.FT22F001 DD UNIT=SYSDA,SPACE=(TRK,(20,10),RLSE)
//DATA.INPUT DD *
BOLEY CHECK
(14s,F6.2,1X,F5.1,1X,F5.1,1X,22F5.2)
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CONCRETE 0.0868 30.00E+5 48.00 0.20 1.00 4.0EH0
0.833
0.00E+0 -100.0E+40 3.00E+0 3.00E+) 1.00E-4 12.00E+) 1.00E-2
1.50E-4
900 22 5.33EH) 50.00E+0 1.00E-5 1.00E-2 3.00E-5
3.00E-5
1.00E+4 50 100 150 50.00

TIME IN 1.0*E~-4 SEC

BEAM DEFLECTION IN 1.5*E-4 INCHES
TIME IN 1.0*E-4 SEC

BEAM SHEAR IN 12.0%*LB.

TIME IN 1.0*E-4 SEC

BEAM MOMENT IN 50.0*LB-IN.
DISTANCE X 1IN INCHES

BEAM DEFLECTION IN 1.5*%E-4 INCHES
DISTANCE X 1IN INCHES

BEAM SHEAR IN 12.0*LB

DISTANCE X 1IN INCHES

BEAM MOMENT IN 50.0*LB-IN.
DISTANCE X 1IN INCHES

BEAM SLOPE IN 1.5*E-4
//DATA.FT30F001 DD DSN=MEN.P11850.A3B.PLOT,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
!/ SPACE=(TRK, (20,2),RISE),

!/ DCB=(RECFM=FB, LRECL=80, BLXSIZE=12960)
//DATA.FT31F001 DD DSN=MEN.P11850.A3B.PLOTI,

/! VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
!/ SPACE=(TRK, (20,2) ,RLSE),

!/ DCB=(RECFM=FB, LRECL=80, BLKSIZE=12960)
//DATA.FT32F001 DD DSN=MEN.P11850.A3B.PLOT2,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
1/ SPACE=(TRK, (20,2),RLSE),

/! DCB=(RECFM=FB, LRECL=80, BLKSIZE=12960)
//DATA.FT33F001 DD DSN=MEN.P11850.A3B.PLOT3,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK, (20,2),RLSE),

/! DCB=(RECFM=FB, LRECL=80, BLKSIZE=12960)
//DATA.FT34F001 DD DSN=MEN.P11850.A3B.PLOT4,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK, (20, 2),RLST),

// DCB=(RECFM=FB, LRECL=R0, BLKSIZE=12960)
//DATA.FT35F001 DD DSN=MEN.P11850.A3B.PLOTS,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
!/ SPACE=(TRK,(20,2),RLSE),

!/ DCB=(RECFM=FB, LRECL=80, BLKSIZE=12960)
//DATA.FT36F001 DD DSN=MEN.P11850.A3B.PLOTS,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK, (20,2),RLSE),

/! DCB=(RECFM=FB, LRECL=80, BLKSIZE=12960)
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APPENDIX B

Computer Program for Infinite Plate

on Elastic Foundation
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// EXEC PGM=1FFBR14
//D DD DSN=MEN.P11850.A3B.PLOT,DISP=(OLD,DELETE),
!/ Y OL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT1,DISP=(OLD,DELETE),
!/ JOL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT2,DISP=(0OLD,DELETE),
! Y OL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT3,DISP=(OLD,DELETE),
// VOL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT4,DISP=(OLD,DELETE),
// VOL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOTS,DISP=(OLD,DELETE),
/1! VOL=REF=MEN.P11850.A3B.LIB
//D DD DSN=MEN.P11850.A3B.PLOT6,DISP=(OLD,DELETE),
/7 VOL=REF=MEN.P11850.A3B.LIB
// EXEC FGCLG,PARM="NOSOURCE~
//SYSIN DD *
ARARRAEARRRRRAEARRARRARRRARARERARARAARRRRRARAR TRk A R R AR Xk Rd ki i
c CIRCULAR PLATE ON ELASTIC FOUNDATION
e Jede e R 9 Fe A e I e Je ok de e e e 5k e e e 7 e v de T e e v A e g ok Tk e ek kR A v Kok e b v vk e ok v ok % ok gk v ok ok ok ok ok ok
C SHEAR AND FLEXURAL WAVES BASED ON DYNAMIC LAWS
C UNITS IN LB~IN~SEC SYSTEM
o
C AIMR = ANGULAR IMPULSE DUE TO RADIAL MOMENT LB-IN-SEC.
C AIMTH = ANGULAR IMPULSE DUE TO TANGENTIAL MOMENT LB-IN-SEC.
C AIQR = ANGULAR IMPULSE DUE TO TRANSVERSE SHEAR LB-IN-SEC.
C ALPHA = ANGULAR STRAIN - D(PHI)/DR RAD/IN.
c Ccp = PLATE VELOCITY IN/SEC.
c c2 = SHEAR WAVE VELOCITY IN/SEC.
cC D = FLEXXURAL RIGIDITY LB-IN.
C DALPH = INCREMENTAL ANGULAR STRAIN RAD/IN.
C DEN = WEIGHT DENSITY OF THE PLATE MATERIAL LB/CU IN.
C DR = CELL LENGTH IN.
C DSTRN = INCREMENTAL LINEAR STRAIN
c DS = DISTANCE SCALE FACTOR IN.
c DT = TIME INCREMENT SEC.
¢ DTD = TIME INCREMENT-DILATATIONAL WAVE SEC.
¢ DTR = TIME INCREMENT-SHEAR WAVE SEC.
C EM = YOUNG”S MODULUS OF ELASTICITY PSI.
C ESR = FOUNDATION SPRING CONSTANT PSI.
C FMT = PRINT FORMAT FOR X-T DIAGRAMS
cC ¢ = SHEAR MODULUS OF RIGIDITY PSI.
C H = THICKNESS OF THE PLATE IN.
C IDENT = TITLE OF RUN
C IM = NO. OF CELLS INTO WHICH PLATE IS DIVIDED
c 1PP = 0 PLOT THE DATA
c 1IPP = 1 PRINT THE DATA
c 1PP = 2 PRINT AND PLOT THE DATA
C IPR = NO. OF COLUMNS OF PRINTOUT IN A PAGE
C KM = TIME CONTROL INDEX FOR THE FIRST RESPONSE-DIST. CURVE
C KMl = TIME CONTROL INDEX FOR THE SECOND RESPONSE-DIST. CURVE
C KxM2 = TIME CONTROL INDEX FOR THE THIRD RESPONSE-DIST. CURVE
C KM = TIME CONTROL INDEX FOR TERMINATING COMPUTATION
c K2 = SHEAR CORRECTION FACTOR
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LIQR = LINEAR IMPULSE DUE TO TRANSVERSE SHEAR 1B-SEC.
MMR = SCALED VALUE OF RADIAL MOMENT
MMRO = SCALED VALUE OF R=RO RADIAL MOMENT INPUT IN-LB.
MMTH = SCALED VALUE OF TANGENTIAL MOMENT IN-LB.
MR = RADIAL BENDING MOMENT PER UNIT LENGTH LB~IN/IN.
MRS = RADIAL MOMENT SCALE FACTOR LB~IN/IN.
VRO = GIVEN APPLIED RADIAL MOMENT AT R=N IN~-LB.
MTH = TANGENTIAL BENDING MOMENT PER UNIT LENGTH LB-IN/IN.
MTHS = TANGENTIAL MOMENT SCALE FACTOR LB-IN/IN.
NAME = NAME OF MATERIAL OF BODY
NU = POISSON”S RATIO
OMEGA = VELOCITY OF ROTATION OF CROSS-SECTION,
D(PSI)/DT ~ CLOCKWISE RAD/SEC.
OMGS = ANGULAR VELOCITY SCALE FACTOR RAD/SEC.
OMOM = SCALED VALUE OF ANGULAR VELOCITY
PHI = ROTATION OF THE CROSS-SECTION ABOUT THE
TANGENTIAL AXIS RAD.

QQ = SCALED VALUE OF SHEAR
QQ0 = SCALED VALUE OF R=RO SHEAR INPUT
QR = TRANSVERSE SHEAR PER UNIT LENGTH LB/1IN.
QRS = SHEAR SCALE FACTOR
QRO = GIVEN APPLIED TRANSVERSE SHEAR AT R=RO LB/IN.
R = RADIAL COORDINATE FROM THE CENTER OF PL IN.
RHO = MASS DENSITY OF PLATE MATERIAL LB=SECk*2 /T N#*4
RL = OUTER RADIUS OF THE PLATE IN.
RO = INNER RADIUS OF THE PLATE IN.
STRAIN = LINEAR STRAIN - O(W)/DR
T = TIME SEC.
TAUL = DAMPING TIME CONSTANT FOR OMEGA SEC.
TAU2 = DAMPING TIME CONSTANT FOR VELOCITY SEC.
™ = TIMT CLOCK WHICH REGULATES DILATATIONAL WAVE SEC.
TL = THE PREVIOUS TD OR TR SEC.
TR = TIME CLOCK WHICH REGULATES SHEAR WAVE SEC.
TS = TIME SCALE FACTOR SEC.
T = SCALED VALUE OF TIME
Tl = DURATION OF MOMENT PULSE AT R=0 SEC.
T3 = DURATION OF VELOCITY PULSE AT R= SEC.
VEL = VELOCITY OF DEFLECTION, D(W)/DT - DOWNWARD IN/SEC.
VELS = LINEAR VELOCITY SCALE FACTOR IN/SEC.
VEIVE = SCALED VALUE OF LINEAR VELOCITY
W = TRANSVERSE DISP. OF THE MIDPLANE IN.
ws =« DEFLECTION SCALE FACTOR
WW = SCALED VALUE OF DEFLECTION
Z = K2%C2 IN/SEC.

RFAL YB(900),XB(900),YB1(900),YB2(900)

LOGICAL*1 SYMA/-""/,SYMB/”,"/,sYMCc/~.”/

REAL*4 D(6,600)

INTEGER*2 A(600),B(600),C(600)
LOGICAL*) LABEL(40,2)

MAIN PROCRAM

DIMENSION R(250),QR(250),VEL(250),W(250),0MEGA(250),QQ(250),

IVEWVE(2

50) ,0MOM(250),WW(250),U(250),QQ5(250)

REAL MR(250),MTH(250), NU,MRO, MRS ,MTHS ,MMR(250) ,MMTH(250),
1MMRO, k2




800
801
802
803
804
805

10

101
11

900

9266

LOGICAL*1 IDENT(80),FMT(30),NAMF(10)
COMMON T,R,G,EM, IMO,H,DI,RO,RL,MR,MTH,QR,CP,C2,K2 ,VEL,W,RHO,
1DEN, NU, OMEGA ,MRO, QRO, T1, T3, DSTRN, DALPH, DT, DR, TS, MRS,
IMTHS,QRS,VELS, OMGS, WS, TT,QQ, MMR ,MMTH,VELVE, OMOM, IM, KM, IPR,
3WW, MMRO, QQ0, QQS , Z, U, TAU1, TAU2, ESR, NAME, FMT, IDENT
READ 801, IDENT,FMT

READ 802, NAME,DEN, EM, RO, RL, NU, DR, H

READ 803,MRO,QRO, T1, T3, TAU1, TAU2

READ 803, TS,QRS,VELS,WS,MRS ,MTHS , OMGS

RFAD 804,KM, IPR, KKM, KKM1, KKM2

READ 805,ESR,DS, IPP

FORMAT(80A1)

FORMAT(80A1/80A1)
FORMAT(10A1,F10.6,E10.2,3F10.2,F10.3,E10.2)
FORMAT(7E10.4)

FORMAT(SI10)

FORMAT(2E10.2,110)

CEE=386.0

G=EM/(2.0%(1.0+NU))
DI=(EM*(H**3))/((12.0)*(1.0~(NU**2)))
RHO=DEN/GEE

CP=(EM/ (RHO*(1.0-(NU**2))))**0.5
C2=(G/RHO)**0.5

K2=((0.76+(0.3*NU))**0.5)

Z=K2*C2

DT=DR/CP

DISCRETATION OF PLATE INTO ELEMENTS

R(1)=RO

DO 101 I=1,250

R(I+1)=R(T1)+DR

IF(ABS(R(I+1)-RL)-DR/2.0) 10,10,101

IM=1

GO TO 11

CONTINUE

IMO=IM+1

PRINT 900, IDENT

FORMAT(1HD,80A1,//)

PRINT 901, NAME,DEN, RHO, EM, G, NU, DI

PRINT 902,RO,RL,H

PRINT 903,CP,C2,K2,2

PRINT 904 ,MRO,QRO,T1,T3

PRINT 905,DT,DR,TS,QRS,VELS,OMGS,MRS ,MTHS ,WS
PRINT 906, IM,KM, IPR

PRINT 9266

FORMAT(1HS,2X,°1°,3X,"R(1)",/)

PRINT 907,(I,R(1),I=1,IMO)

MMRO=MRO/MRS

QQO=QRO/QRS

REWIND 11

REWIND 12

REWIND 13

REWIND 20

REWIND 21

REWIND 22
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CALL PLATE
IF(IPP.EQ.1) GO TO 500
c PRINT INSTRUCTIONS
A=l
IM2=1PR
30 REWIND 11
REWIND 12
REWIND 13
REWIND 20
REWIND 21
REWIND 22
IF(IM+1-IM2) 24,24,25
26 IM2=IM+L
c R-T DIAGRAM FOR RADIAL MEMENT
25  PRINT 908
DO 104 K=1,KM
READ(11) TT,MMRO,QQO,(MMR(I),I=1,IMO)
PRINT FMT, TT,MMRO,QQO,(MMR(I),I=IA,IM2)
104 CONTINUE
c R-T DIAGRAM FOR TANGENTIAL MOMENT
PRINT 4913
DO 4108 K=1,KM
READ(13) TT,MMRO,QQO,(MMTH(I),I=1,IMO)
PRINT FMT,TT,MMRO,QQO,(MMTH(I),I=IA, IM2)
4108 CONTINUE
c R-T DIAGRAM FOR SHEAR
PRINT 1909
DO 105 K=1 KM
READ(12) TT,MMRO,QQ0, (QQ(I),I=1,IMO)
PRINT FMT, TT,MMRO,QQO0, (QQ(I),I=IA, IM2)
105 CONTINUE
c R-T DIAGRAM FOR LINEAR VELOCITY
PRINT 1910
DO 106 K=1,KM
READ(20) TT,MMRO,QQO0,(VEIVE(I),I=1, IMO)
PRINT FMT, TT,MMRO,QQO,(VEIVE(IL), I=IA, IM2)
106 CONTINUE
c R-T DIAGRAM FOR DEFLECTION
PRINT 911
DO 107 K=1,KM
READ(21) TT,MMRO,QQO,(WW(I),I=1,IM0) |
PRINT FMT, TT,MMRO,QQO, (WW(I),I=IA,IM2)
107 CONTINUE
R-T DIAGRAM FOR ANGULAR VELOCITY
PRINT 1912
DO 108 K=1,KM
READ(22) TT,MMRO,QQO, (OMOM(1),I=1,IMO)
PRINT FMT, TT,MMRO,QQO,(OMOM(I),I=TA,IM2)
108 CONTINUE
IF(IM-IM2) 9872,9872,37
37  IA=IA+IPR
IM2eIM2+IPR
G0 TO 30
9872 PRINT 913

¢]




[}
O

901 FORMAT(26HOMATERIAL = _10Al /
1 26H WEICHT DENSITY DEN = ,F8.3,16H LBS/IN**3 /
2 26H MASS DENSITY RHO = ,F8.6,16H LB/IPS**2/IN**4 /
3 26H YOUNGS MODULUS E = ,E8.2,16H PSI /
4 26H MOD. OF RIGIDITY G = ,EB.2,16H PSI /
5 26H POISSONS RATIO NU = ,F8.2,16H /
6 26H FLEXURAL RIGIDITY D = ,E8.2,16H LB-IN D)
902 FORMAT(26HOINNER RADIUS RO = ,FB.4,16H IN /
1 26HOOUTER RADIUS RL = ,F8.4,16H IN /
2 26HOPLATE THICKNESS H = ,F8.4,16H IN >
903 FORMAT(26HOPLATE VELOCITY CP = ,F10.2,16H IN/SEC /
1 26H SHEAR VELOCITY C2 = ,F10.2,16H IN/SEC /
2 26H SHEAR WAVE COR. K2 = ,F8.6,15H IN**2 /
3 26H WAVE OF SHEAR DISC. 2z = ,F10.2,17H IN/SEC (Z=K2*C2)/)
904 FORMAT(24HOR=0 MOMENT PULSE MRO= ,F8.0,16H IN-LB /
1 24H R=0 SHEAR PULSE QrRO= | F8.0,16H LB /
4 24H MRO PULSE DURATION Tl= ,E12.5,14H SFC /
6 24H QRO PULSE DURATION T3= ,E12.5,14H SEC N
905 FORMAT(26HOTIME INCREMENT DT = ,E8.2,16H SEC /
1 26H CELL LENCTH DR = ,F8.5,16H IN /
2 26H TIME SCALE FACTOR TS = ,E8.2,16H SEC /
3 26H SHEAR SCALE FACTOR QRS = ,E8.2,16H LB /
4 26H VEL SCALE FACTOR VELS = ,E8.2,16H IN/SEC /
5 26H ANG VEL SCALE FAC OMGS = ,EB8.2,16H RAD/SEC /
6 26H MOM. SCALE FACTOR MRS = ,E8.2,16H LB /
7 26H MOM. SCALE FACTOR MTHS = ,E8.2,16H LB /
8 26H DEF SCALE FACTOR WS = ,E8.2,16H IN D)
906 FORMAT(26HONO. OF CELLS IM = ,14,1S5H /
1 26H TOT. TIME INTERVALS XM = ,14,15H /
2 26H NO. COLS. PRINTED IPR = ,I4, 111
907 FORMAT(14,F8.4)
908 FORMAT(46H1TIME PULSE RADIAL MOMENT PROPAGATION N
1909 FORMAT(46H1TIME PULSE SHEAR PROPAGATION a
1910 FORMAT(46HITIME PULSE LINEAR VELOCITY PROPAGATION IS
911 FORMAT(46H1TIME PULSE DEFLECTION PROPAGATION I3
1912 FORMAT(46H1TIME PULSE ANGULAR VELOCITY PROPAGATION D)
913 FORMAT(1H1)
4913 FORMAT(46H1TIME PULSE TANGENTIAL MOMENT PROPAGATION M)
500 REWIND 21
DO 127 K=1,KM
READ (21) TT,MMRO,QQO,(WW(I),I=1,6IMO)
XB(K)=TT
YB(K)=WW(1)
YB1(K)=WW(1l1l)
YB2(K)=WW(21)
127 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,30)
READ(5,800) (LABEL(J,1),J=1,40)
READ(5,800) (LABEL(J,2),J=1,40)
c SET PLOTIT ARGUMENT VALUES.
N=KM
LOGX=0
LOGY~0




130

n

128

XAXIS=8.0
YAXIS=5.0

XMIN=0.0

NXDEC=5

XINC=20.0

YMIN=~10.0

NYDEC=5

YINC=4.0

XSMIN=0.0

XSMAX=100.0

YSMIN=-10.0

YSMAX=10.0

NDECX=1

NDECY=1

HT=0.15

HTS=0.15

ICON=0

CALL PLOTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMIN,XINC, NXDEC,
1 YMIN,YINC, NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB, SYMA, ICON, HT,
1 NDECX, NDECY,HTS)

DO 130 I=1,N

YB(1)=YB1(1)

ICON=0

CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 71 I=1,N

YB(I)=YB2(1)

ICON=N

CALL SAMEP(YB,N,XB,SYMC, ICON)
CALL EPLOT

REWIND 12

DO 128 K=1,KM

READ (12) TT,MMRO,QQ0,(QQ(I),I=1,IMO)
XB(K)=TT

YB(K)=QQ(1)

YB1(K)=QQ(11)

YB2(X)=QQ(21)

CONTINUE

CALL INITQ(A,B,C,D,600)

CALL STSWQ(4662,31)

READ(5,800) (LABEL(J,1),J=1,40)
READ(S5,800) (LABEL(J,2),J=1,40)
SET PLOTIT ARGUMENT VALUES.
Ne=KM

LOGX=0

LOGY=0

XAXIS=8.0

YAXIS=5.0

XMIN=0.0

NXDEC=5

XINC=20.0

YMIN=-10.0

NYDEC=5

YINC=4.0

XSMIN=0.0




72

73

129

XSMAX=100.0

YSMIN=-10.0

YSMAX=10.0

NDECX=1

NDECY=1

HT=0.15

HTS=0.15

ICON=0

CALL PLOTIT(YB, N, LOGX, LOGY, XAXIS, YAXIS, XMIN,XINC, NXDEC,

1 YMIN,YINC, NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB, SYMA, ICON, HT,

1 NDECX, NDECY, HTS)

DO 72 I=1,N

YB(I)=YB1(I)

ICON=0

CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 73 I=1,N

YB(1)=YB2(I)

ICON=0

CALL SAMEP(YB, N, XB,SYMC, ICON)
CALL EPLOT

REWIND 11

DO 129 K=1,KM

READ (11) TT,MMRO,QQO,(MMR(I),I=1,IMO)
XB(K)=TT

YB(K)=MMR(1)

YB1(K)=MMR(11)

YB2 (K )=MMR(21)

CONTINUE

CALL INITQ(A,B,C,D,600)

CALL STSWQ(4662,32)
READ(5,800) (LABEL(J,1),J=1,40)
READ(5,800) (LABEL(J,2),J=1,40)
SET PLOTIT ARGUMENT VALUES.
N=KM

LOGX=0

LOGY=0

XAXIS=8.0

YAXIS=5.0

XMIN=0.0

NXDEC=5

XINC=20.0

YMIN=-10.0

NYDEC=5

YINC=4.0

XSMIN=0,0

XSMAX=100.0

YSMIN=-10.0

YSMAX=10.0

NDECX=1

NDECY=1

HT=0.15

HTS=0.15

1CON=0

CALL PLOTIT(YB,N, LOGX, LOGY,XAXIS, YAXIS, XMIN, XINC, NXDEC,

v e B




92

1 YMIN,YINC, NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB, SYMA, ICON, HT,
1 NDECX, NDECY, HTS)
DO 74 I=1,N
74 YB(I)=YBi(T)
ICON=0
CALL SAMEP(YB,N,XB,SYMB, ICON)
DO 75 I=1,N
75  YB(I)=YB2(I)
ICON=0
CALL SAMEP(YB,N,XB,SYMC, ICON)
CALL EPLOT
REWIND 21
DO 131 K=1,KM
READ (21) TT,MMRO,QQ0,(WW(I),I=1,IMO)
IF(K.NE.KKM.AND.K.NE.KKM1.AND.K. NE.KKM2) GO TO 131
DO 231 I=1,IMO
XB(I)=R(I)
IF(K.EQ.KKM) YB(I)=WW(I)
IF(K.EQ.KKM1) YB1(I)=WW(T)
IF(K.EQ.KKM2) YB2(I)=WW(I)
231 CONTINUE
131 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,33)
READ(5,800) (LABEL(J,1),J=1,40)
READ(5,800) (LABEL(J,2),J=1,40)
SET PLOTIT ARGUMENT VALUES.
N=IMO
LOGX=0
LOGY=0
XAXIS=8.0
YAXIS=5.0
XMIN=N.0
NXDEC=5
XINC=0.2*DS
YMIN=-10.0
NYDEC=5
YINC=4.0
XSMIN=0.0
XSMAX=DS
YSMIN=-10.0
YSMAX=10.0
NDECX=1
NDECY=1
HT=0.15
HTS=0.15
1CON=0
CALL PLOTIT(YB, N, LOGX, LOGY,XAXIS, YAXIS, XMIN, XINC, NXDEC,
1 YMIN,YINC, NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB, SYMA, ICON, HT,
1 NDECX, NDECY,HTS)
DO 76 I=1,N
76 YB(1)=YB1(I)
1CON=0
CALL SAMEP(YB,N,XB,SYMB, ICON)




77

232
132

78

79

93

po 77 1=1,N

YB(I)=YB2(I)

TCON=0

CALL SAMEP(YB,N,XB,SYMC, ICON)

CALL EPLOT

REWIND 12

DO 132 K=1,KM

READ (12) TT,MMRO,QQ0,(QQ(1),I=1,IM0)
IF(K.NE.KKM.AND. K, NE .KKM1.AND.K. NE.KKM2) GO TO 132

DO 232 1=1,IMO

XB(I)=R(I)

IF(K.EQ.KKM) YB(I)=QQ(I)

IF(K.EQ.KKM1) YB1(I)=QQ(I)

IF(K.EQ.KKM2) YB2(I)=QQ(I)

CONTINUE

CONTINUE ]
CALL INITQ(A,B,C,D,600) |
CALL STSWQ(4662,34)

READ(5,800) (LABEL(J,1),J=1,40)
READ(5,800) (LABEL(J,2),J=1,40)
SET PLOTIT ARGUMENT VALUES.
N=IMO 1
LOGX=0

LOGY=0

XAX1S=8.0

YAX1S=5.0

XMIN=0.0

NXDEC=5

XINC=0.2*DS

YMIN=-10.0

NYDEC=5

YINC=4.,0

XSMIN=0.0

XSMAX=DS

YSMIN=-10.0

YSMAX=10.0

NDECX=1

NDECY=1

HT=0.15

HTS=0.15

ICON=0

CALL PLOTIT(YB, N, LOGX, LOGY,XAXIS, YAXIS,XMIN, XINC, NXDEC,
1 YMIN,YINC,NYDEC, LABEL,XSMIN,XSMAX, YSMIN, YSMAX, XB,SYMA, ICON, HT,
1 NDECX,NDECY,HTS)

DO 78 1=l N

YB(1)=YB1(1)

ICON=0

CALL SAMEP(YB,N,XB,SYMB, ICON)

DO 79 1=1,N

YB(I)=YB2(1)

ICON=0

CALL SAMEP(YB,N,XB,SYMC, ICON)

CALL EPLOT

REWIND 11




233
133

81

82

94
DO 133 K=1,KM
READ (11) TT,MMRO,QQO,(MMR(I),I=l,IM0)
IF(K. NE.KKM.AND.K. NE.KKM1.AND.K. NE.KKM2) CO TO 133
D) 233 I=1,IMO
XB(I)=R(1)
IF(K.EQ.KKM) YB(I)=MMR(I)
IF(K.EQ.KKM1) YB1(I)=MMR(I)
IF(K.EQ.KKM2) YB2(I)=MMR(I)
CONTINUE
CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,35)
READ(S5,800) (LABEL(J,1),J=l,40)
READ(S5,800) (LABEL(J,2),J=1,40)
SET PLOTIT ARGUMENT VALUES.
N=IMO
LOGX=0
LOGY=0
XAXIS=8.0
YAXIS=5.0
XMIN=0.0
NXDEC=5
XINC=0.2*DS
YMIN=-10.0
NYDEC=5
YINC=4.0
XSMIN=0,0
XSMAX=DS
YSMIN=~10.0
YSMAX=10.0
NDECX=1
NDECY=1
HT=0.15
HTS=0.15
ICON=0
CALL PLOTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMIN, XINC, NXDEC,
1 YMIN,YINC, NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB, SYMA, ICON, HT,
1 NDECX, NDECY, HTS)
DO 81 I=1,N
YB(I)=YB1(I)
ICON=0
CALL SAMEP(YB,N,XB,SYMB,ICON)
DO 82 I=1,N
YB(1)=YB2(I)
ICON=0
CALL SAMEP(YB,N,XB,SYMC, ICON)
CALL EPLOT
Y8(1)=0.0
YB1(1)=0.0
YB2(1)=0.0
REWIND 21
DO 136 K=1,KM
READ (21) TT,MMRO,QQO,(WW(I),I=1,IMO)
IF(X.NE.KKM.AND.K. NE. KKM1 . AND. K. NE. KKM2) GO TO 136




236
136

84

85

95

DO 236 I=1,IM

XB(1)=R(I)

IF(K.EQ.KKM) YB(TI+1)=(WW(I+1)-WW(I))/DR

IF(K.5Q.KKM1) YB1(I+1l)=(WW(I+1)-WW(I))/DR
IF(K.FEQ.KKM2) YB2(I+1)=(WW(I+1)-WW(I))/DR

CONTINUE

CONTINUE

CALL INITQ(A,B,C,D,600)

CALL STSWQ(4662,36)

READ(S5,800) (LABEL(J,1),J=1,40)

READ(5,800) (LABEL(J,2),J=1,40)

SET PLOTIT ARGUMENT VALUES.

N=IMO

LOGX=0)

LOGY=0

XAXIS=8.0

YAXIS=S5.0

XMIN=0.0

NXDEC=5

XINC=0.2*DS

YMIN=-10.0

NYDEC=5

YINC=4.0

XSMIN=0.0

XSMAX=DS

YSMIN=-10.0

YSMAX=10.0

NDECX=1

NDECY=1

HT=0.15

HTS=0.15

ICON=0

CALL PLOTIT(YB, N, LOGX, LOGY, XAXIS, YAXIS,XMIN,XINC, NXDEC,
1 YMIN, YINC, NYDEC, LABEL, XSMIN, XSMAX, YSMIN, YSMAX, XB,SYMA, ICON, HT,
1 NDECX, NDECY,HTS)

DO 84 I=1,N

YB(I)=YB1(I)

ICON=0

CALL SAMEP(YB,N,XB,SYMB, ICON)

DO 85 I=1,N

YB(I)=YB2(I)

ICON=0

CALL SAMFEP(YB,N,XB, SYMC, ICON)

CALL EPLOT

STOP

END

SUBROUTINE PLATE

DIMENSION R(250),QR(250),VEL(250),W(250),0MEGA(250),QQ(250),
IVEIVE(250),0MOM(250) ,WW(250) ,AIMR(250) ,AIMTH(250),U(250) ,AIQR(250)
1,QQ8(250)

REAL MR(250),MTH(250), NU,MRO, MRS ,MTHS ,MMR(250) ,MMTH(250),
1IMMRO, K2, LIQR(250)

LOGICAL*1 TDENT(80),FMT(80),NAME(10)

COMMON T,R,G,EM, IMO,H,DI,RO,RL,MR,MTH,QR,CP,C2,K2,VEL,W, RHO,

'




921

1109

1492

113

114
115

116

103

96

LDEN, NU, OMEGA ,MRO, QRO, T1, T3, DSTRN, DALPH, DT, DR, TS, MRS,
2MTHS,QRS,VELS, OMGS, WS, TT, QQ, MMR,MMTH ,VELVE , OMOM, IM, KM, IPR,
3Www,MMRO, QQ0,QQS, Z,U, TAU1, TAU2, ESR, NAME , FMT, IDENT
PRINT 921

FORMAT(1H1)

INITAL STATE OF PLATE

DO 119 I=1, IMO

AIMR(1)=0.0

AIMTH(I)=0.0

AIQR(I)=0.0

LIQR(I)=0.0

MR(1)=0.0

MTH(I)=0.0

QR(I)=0.0

VEL(I)=0.0

W(1)=0.0

OMEGA(I)=0.0

U(1)=n.0

CONTINUE

DTD=DR/CP

DTR=DR/Z

T=0.0

TD=0.0

TL=0.0

TLB=0.0

TR=0.0

DO 101 K=1,6KM

TT=T/TS

***INPUT AT R=RO, MOMENT BOUNNDARY CONDITION***
IF(T-T1) 110,111,111 110 MR(IMO)=MRO
GO TO 1492 111  MR(IMO)=0.0

CONTINUE

***INPUT AT R=RO, SHEAR BOUNDARY CONDITIOQN**#
IF(T-T3) 113,114,114
QR(1)=QRO/(2*3.1415*R(1))

GO TO 115

QR(1)=0.00

CONTINUE

***FOUNDATION REACTION*#**

DO 116 I=1,IMO

QQS(I)=-ESR*W(1)

CONTINUE

SCALING FOR PRINTOUT

1ZZ=IMO

DO 103 I=1,122

MMR(T)=MR(I)/MRS

MMTH(I)=MTH(1)/MTHS

QQ(I)=QR(I)/NRS

VEWVE(I)=VEL(I)NELS

OMOM(T)=OMEGA(T )/OMGS

WW(T)=W(T)/WS

CONTINUE

WRITE(11)TT,MMRO,QQO, (MMR(1),I=1, IMO)
WRITE(12)TT,MMRO,QQO,(QQ(T),I=1, IMO0)
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12

8a
16

O

15

930

o
928

2113

815

108

107

13

97

YRITE(13)TT,MMRO,QQ0, (MMTH(I),I=1, IMO)
WRITE(20)TT,MMRO,QQN,(VSIVE(L), I=1, IMO)
WRITE(21)TT,MMR0, 000, (WW(I),I=1, IMO)
WRITE(22)TT,MMRO, QQ0, (OMOM(1),1I=1,IM0)
IF(ABS(TD-(T+DT))-0N.15~1n) 19,19, 89

IF(TD-TR) 15,15,16

IF(TD+DTD-TR-DTR) 15,15,13

THE CP WAVE

DO 108 1I=2,IM0
AIMR(I)=AIMR(I )+ (MR(I)*(R(I~1)+DR)-MR(I~-1)*R(I-1))*DTD
AIMTH(I)=AIMTH(I)+MTH(I~-1)*DR*DTD
AIQR(I)=AIQR(I)+(QR(I)*(R(I~1)+DR)I*DR+QR(I-1)*R(I-1)*DR)*0.5
1*(TD+DTD-TL)
LIQR(I~-1)=LIQR(I-1)+(QR(I)*(R(I-1)+DR)-QR(I-1)*R(1-1)
1)*( TD+DTD~-TL)

IF(TAU1-1.0E+40) 930,928,928
DOMG=(~1.0)*OMEGA( T )*(DTD/TAUL)
OMEGA(I)=OMEGA(I)+(DOMG/2.0)

IMPULSE AND MOMENTUM ACROSS CP.

B=( (RHO*H) /24 .0)*( (H**2))*( (2 ,0*R(I)*DR)+(DR**2))
DOM=(AIMR(I)-AIMTH(I)-AIQR(I))/B

OMEGA (1 )=OMEGA(1)+DOM

OMEGA(1)=0.0

IF(TAU1-1.0E+40) 9113,815,815

DAMPING, SECOND HALF
DOMG=(~1.0)*OMECA(I)*(DTD/TAUL)

OMEGA( I )=OMEGA(I)+(DOMG/2.0)

INITIALIZE ANGULAR IMPULSE AFTER USE

AIMR(I)=0.0

ATMTH(I)=0.0

AIQR(I)=0.0

CONTINUE

TD=TD+DTD

TLB=TL

TL=TD

DO 107 I=1,IM

ANGULAR STRAIN

DALPH=( (OMEGA( I+1 )-OMEGA(1))#*DTD) /DR

CONSTITUTIVE EQUATIONS FOR MOMMENT

IF(I.EQ.1) DMR=DI*(DALPH)

IF(I.NE.1) DMR=DI*(DALPH+((NU)*U(I-1)))
DMTH=DI*(U(1)+((NU)*DALPH))

MR(I)=MR(I )}+DMR

IF(I.EQ.1) MTH(I)=MTH(I )+DMTH

IF(I.NE.1) MTH(I-1)=MTH(I-1)+DMTH
U(1)=(OMEGA(I)*DTD)/R(1)
QR(I+1)=QR(T1+1 )+ (K2#*2 ) *GXH*OMEGA( I+l )*DTD
CONTINUE

GO TO 12

DO 104 I=1,IM

LIQR(I)=LIQR(I)+(QR(I+1 )*(R(IY*+DR)-QR(I)*R(I))*(TR+DTR-TL)+
1(0.5*(QQS (I+1 )+QNS(I))*(R(I }+DR/2.0)*DR)*DTR
AIQR(I+1)=AIQR(TI+1 )+ (QR(I+1 )*(R(T)+DR)I*DR+QR(I)I*R(1)*DR)*0.5*( TR+
1DTR-TL)




IF(TAU2~1.0E+40) 925,931,931
c DAMPING, FIRST HALF
925 IWELG=(~1.0)* EL(I)*(DTR/TAU2)
VEL(I)=WEL(I )+ (DVELG/2.0)
c IMPULSE AND MOMENTUM ACROSS K2*C2
931 A=(R(TI)*DR)+((0.5)*DR*DR)
DVEE=LIQR(I)/(RHO*H*A)
VEL(1)=/ EL(I)+IVEE
VEL(IM+1)=0.0
IF(TAU2-1.0E+40) 927,818,818
c DAMPING, SECOND HALF
927 WELG=(-1.0)WEL(I)*(DTR/TAU2)
VEL(I)=VEL(I)+(DVELG/2.0)
818 LIQR(I)=0.0
104 CONTINUE
TR=TR+DTR
TLB=TL
TL=TR
DO 102 I=1,IM
DSTRN=( (VEL(I+L)-VEL(I))*DTR)/DR
DOR=(K2**2 )*G*H* (DS TRN)
QR(I+1)=QR(I+1)+DQR
W(I)=W(I)+(VEL(I)*DTR)
102 CONTINUE
co TO 12
19  CONTINUE
T=T+DT
101 CONTINUE
ENDFILE 11
ENDFILE 12
ENDFILE 13
ENDFILE 20
ENDFILE 21
ENDFILE 22
500 RETURN
END
//DATA.FT11F001 DD UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)
//DATA.FT12F001 DD UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)
//DATA.FTL3F001 DD UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)
//DATA.FT20F001 DD UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)
//DATA.FT21F001 DD UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)
//DATA.FT22F001 DD UNIT=SYSDA, SPACE=(TRK,(5,5),RLSE)
//DATA.INPUT DD *
CONDITION 1 FOR PLATE ON ELASTIC FOUNDATION
(14S,F6.2,1X,F5.1,1X,F5.1,1X,22F5.2)
CONCRETE 0.0868  30.00E+5 0.20 15.00
4.00

0.20

0.000E+0 -100.0E+0 4.0000E+) 4.0000E+0 3.0000E-5 3.0000E-5
1.0000E-5 10.000E+0 4.0000E-1 5.0000E-6 5.00E+0 1.0000E+0 5.0000E+0

100 22 100 100 50
1.20E+5 15.00E+0 1
TIME IN 1.0%*E-5 SEC
PLATE DEFLECTION IN S5*E-6 INCHES
TIME IN 1.0%E-5 SEC

98

0.20




99

PLATE SHEAR IN 10.*LB.

TIME IN 1.0%*E~5 SEC

PLATE MOMENT IN S.*LB-IN.
DISTANCE X 1IN INCHES

PLATE DEFLECTION IN 5*f-& INCHES
DISTANCE X 1IN INCHES

PLATE SHEAR IN 10.*LB

DISTANCE X 1IN INCHES

PLATE MOMENT IN S5.*LB-IN.
DISTANCE X 1IN INCHES

PLATE SLOPE IN 5*E-6
//DATA.FT30F0N1 DD DSN=MEN.P11850.A3B.PLOT,

// YOL=REF=MEN.P11850.A38.LIB,DISP=(NEW,KREP),
// SPACE=(TRK,(1,2),RLSF),

!/ DCB=(RECFM=FB, LRECL=30, BLKSIZE=12960)
//DATA.FT31F0O01 DD DSN=MEN.P11850.A3B.PLOT!,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK, (1,2),RLSE),

// DCB=(RFCFM=FB, LRECL=80, BLKSIZE=12940)
//DATA.FT32F001 DD DSN=MEN.P11850.A3B.PLOT2,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK,(1,2),RLSE),

!/ DCB=(RECFM=FB, LRECL=30, BLKSIZE=12960)
//DATA.FT33F001 DD DSN=MEN.P11850.A3B.PLOT3,

/1l VOL=RFF=MEN.P11850.A38.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK,(1,2),RLSE),

!/ DCB=(RECFM=FB, LRECL=80, BLKS1ZE=12960)

/ /DATA.FT34FN01 DD DSN=MEN.P11850.A3B.PLOT4,

/1 VOL=RFF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK,(1,2),RLSE),

!/ DCB=(RECFM=FB, LRECL=80, BLKSIZE=12960)
//DATA.FT3ISFO01 DD DSN=MEN.P11850.A3B.PLOTS,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK,(1,2),RLSE),

!/ DCB=(RECFM=FB, LRECL=30,BLKSIZE=12960)
//DATA.FT36F001 DD DSN=MEN.P11850.A3B.PLOT6,

// VOL=REF=MEN.P11850.A3B.LIB,DISP=(NEW,KEEP),
// SPACE=(TRK,(1,2),RLSF),

!/ DCB=(RECFM=FB, LRECL=80,BLKSIZE=12960)







